Skip to main content
Log in

A linear time approximation scheme for computing geometric maximum k-star

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Facility dispersion seeks to locate the facilities as far away from each other as possible, which has attracted a multitude of research attention recently due to the pressing need on dispersing facilities in various scenarios. In this paper, as a facility dispersion problem, the geometric maximum k-star problem is considered. Given a set P of n points in the Euclidean plane, a k-star is defined as selecting k points from P and linking k − 1 points to the center point. The maximum k-star problem asks to compute a k-star on P with the maximum total length over its k − 1 edges. A linear time approximation scheme is proposed for this problem. It approximates the maximum k-star within a factor of \({(1+\epsilon)}\) in \({O(n+1/\epsilon^4 \log 1/\epsilon)}\) time for any \({\epsilon >0 }\). To the best of the authors’ knowledge, this work presents the first linear time approximation scheme on the facility dispersion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal P.K., Varadarajan K.R., Procopiuc C.M.: Approximation algorithms for k-line center. Algorithmica 42(3), 221–230 (2005)

    Article  Google Scholar 

  2. Agarwal P.K., Har-Peled S., Varadarajan K.R.: Approximating extent measures of points. ACM 51(4), 606–635 (2004)

    Article  Google Scholar 

  3. Baur C., Fekete S.P.: Approximation of geometric dispersion problems. Algorithmica 30(3), 451–470 (2001)

    Article  Google Scholar 

  4. Blum M., Floyd R.W., Pratt V.R., Rivest R.L., Tarjan R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

    Article  Google Scholar 

  5. Cappanera, P.: A survey on obnoxious facility location problems. Technical Report: TR-99-11, University of Pisa (1999)

  6. Chan T.: Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl. 35, 20–35 (2006)

    Article  Google Scholar 

  7. Chandra B., Halldorsson M.M.: Approximation algorithms for dispersion problems. J. Algorithms 38(2), 438–465 (2001)

    Article  Google Scholar 

  8. Erkut E.: The discrete p-dispersion problem. Eur. J Oper. Res. 46(1), 48–60 (1990)

    Article  Google Scholar 

  9. Erkut E., Neuman S.: Comparison of four models for dispersing facilities. INFOR: Inf. Syst. Oper. Res. 29(2), 68–85 (1991)

    Google Scholar 

  10. Feige U., Kortsarz G., Peleg D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  Google Scholar 

  11. Fekete S.P., Merjer H.: Maximum dispersion and geometric maximum weight cliques. Algorithmica 38(3), 501–511 (2004)

    Article  Google Scholar 

  12. Hassin R., Rubinstein S., Tamir A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21, 133–137 (1997)

    Article  Google Scholar 

  13. Klein P.N.: A linear-time approximation scheme for tsp in undirected planar graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

    Article  Google Scholar 

  14. Kuby M.J.: Programming models for facility dispersion: the p-dispersion and maxisum dispersion problems. Geogr. Anal. 19(4), 315–329 (1987)

    Article  Google Scholar 

  15. Moon I.D., Chaudhry S.S.: An analysis of network location problems with distance constraints. Manag. Sci. 30(3), 290–307 (1984)

    Article  Google Scholar 

  16. Pardalos, P.M., Du, D.Z. (eds.): Network design: connectivity and facilities location. DIMACS Series vol. 40, American Mathematical Society (1998)

  17. Qian J., Wang C.-A.: A linear-time approximation scheme for maximum weight triangulation of convex polygons. Algorithmica 40(3), 161–172 (2004)

    Article  Google Scholar 

  18. Ravi S.S., Rosenkrantz D.J., Tayi G.K.: Heuristic and special case algorithms for dispersion problems. Oper. Res. 42(2), 290–307 (1994)

    Article  Google Scholar 

  19. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Approximation algorithms for facility dispersion. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics 1st edn. Chapman and Hall/CRC (2007)

  20. Resende M.G.C., Pardalos P.M.: The Handbook of Optimization in Telecommunications. Springer, Berlin (2006)

    Book  Google Scholar 

  21. Rosenkrantz D.J., Tayi G.K., Ravi S.S.: Facility dispersion problems under capacity and cost constraints. J. Comb. Optim. 4(1), 7–33 (2000)

    Article  Google Scholar 

  22. Tamir A.: Obnoxious facility location on graphs. SIAM J. Discret. Math. 4(4), 550–567 (1991)

    Article  Google Scholar 

  23. Vazirani V.V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

  24. White D.J.: The maximal-dispersion problem. IMA J. Manag. Math. 3(2), 131–140 (1991)

    Article  Google Scholar 

  25. White D.J.: The maximal dispersion problem and the “first point outside the neighbourhood” heuristic. Comput. Oper. Res. 18(1), 43–50 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Hu, S. A linear time approximation scheme for computing geometric maximum k-star. J Glob Optim 55, 849–855 (2013). https://doi.org/10.1007/s10898-012-9867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9867-6

Keywords

Navigation