Abstract
An implicit algorithm for finding common fixed points of an uncountable family of nonexpansive mappings is proposed. A new inexact iteration method is also proposed for countable family of nonexpansive mappings. Several strong convergence theorems based on our main results are established in the setting of Banach spaces. Both algorithms are applied for finding zeros of accretive operators and for solving convex minimization, split feasibility and equilibrium problems.
Similar content being viewed by others
References
Aleyner A., Reich S.: An explicit construction of sunny nonexpansive retractions in Banach spaces. Fixed Point Theory Appl. 3, 295–305 (2005)
Allen G.: Variational inequalities, complementarity problems and duality theorems. J. Math. Anal. Appl. 58, 1–10 (1977)
Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)
Aubin J.P., Cellina A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)
Barbu V., Precopanu Th.: Convexity and Optimization in Banach spaces. Editura Academei R.S.R, Bucharest (1978)
Benavides T.D., Acedo G.L., Xu H.K.: Construction of sunny nonexpansive retractions in Banach spaces. Bull. Aust. Math. Soc. 66, 9–16 (2002)
Benavides T.D., Acedo G.L., Xu H.K.: Iterative solutions for zeros of accretive operators. Math. Nachr. 248(249), 62–71 (2003)
Bianchi M., Schaible S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996)
Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
Brezis H., Nirenberg L., Stampacchia G.A.: Remark on Ky Fans minimax principle. Boll. Unione Mat. Ital. 6, 293–300 (1972)
Browder F.E.: Nonlinear mappings of nonexpansive and accetive type in Banach spaces. Bull. Am. Math. Soc. 73, 875–882 (1967)
Bruck R.E. Jr: Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 179, 251–262 (1973)
Bruck R.E. Jr: A strongly convergent iterative solution of \({0\in Ux}\) for a maximal monotone operator U in Hilbert spaces. J. Math. Anal. Appl. 48, 114–126 (1974)
Byrne C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)
Byrne C.L.: A unified treatment of some iterative algorithms insignal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)
Censor Y., Elfving T.: A multiprojection algorithm using Bregman projections in a product space Numer. Algorithms 8, 221–239 (1994)
Censor Y., Bortfeld T., Martin B., Tromo A.: A unified approach for inversion problems in intensitymodulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)
Censor Y., Elfving T., Kopf N., Bortfeld T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)
Censor Y., Motova A., Segal A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244–1256 (2007)
Censor Y., Segal A.: Iterative projection methods in biomedical inverse problems. In: Censor, Y., Jiang, M., Louis, A.K. (eds) Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), pp. 65–96. Edizioni della Normale, Pisa (2008)
Chidume C.E., Zegeye H.: Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps. Proc. Am. Math. Soc. 132, 831–840 (2003)
Colao V., Lopez Acedo G., Marino G.: An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings. Nonlinear Anal. 71, 2708–2715 (2010)
Colao V., Leustean L., Lopez G., Martin-Marquez V.: Alternative iterative methods for nonexpansive mappings, rates of convergence and applications. J. Convex Anal. 18(2), 465–487 (2011)
Combettes P.L., Hirstoaga S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)
Ecksteind J., Bertsekas D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
Eckstein J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83, 113–123 (1998)
Edelstein M., OBrien R.C.: Nonexpansive mappings, asymptotic regularity and successive approximations. J. Lond. Math. Soc. 3, 547–554 (1978)
Fan K.: A minimax inequality and applications. In: Shisha, O. (eds) Inequality, vol. III, pp. 103–113. Academic Press, New York (1972)
Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker Inc., New York (1984)
Gol’shtein E.G., Tret’yakov N.V.: The gradient method of minimization and -algorithms of convex programming based on Lagrangian functions. Ekonomika i Matematcheskie Metody 11(4), 730–742 (1975)
Güler O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)
Ha K.S., Jung J.S.: Strong convergence theorems for accretive operators in Banach space. J. Math. Anal. Appl. 147, 330–339 (1990)
Halpern B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)
Iusem A.N., Sosa W.: Iterative algorithms for equilibrium problems. Optimization 52(3), 301–316 (2003)
Kamimura S., Takahashi W.: Approximating solutions of maximal monotone operators in Hilbert space. J. Approx. Theory 106, 226–240 (2000)
Kato T.: Nonlinear semi-groups and evolution equations. J. Math. Soc. Jpn. 19, 508–520 (1967)
Lim T.-C.: A fixed point theorem for families of nonexpansive mappings. Pac. J. Math 53, 487–493 (1974)
Leuştean, L.: Rates of asymptotic regularity for Halpern iterations of nonexpansive mappings. In: Calude, C.S., Stefanescu, G., Zimand, M. (eds.) Combinatorics and Related Areas. A Collection of Papers in Honor of the 65th Birthday of Ioan Tomescu, J. Univers. Comput. Sci. 13, 1680–1691 (2007)
Mainge P.E.: Viscosity methods for zeroes of accretive operators. J. Approx. Theory 140, 127–140 (2006)
Marino G., Colao V., Muglia L., Yao Y.: Krasnoselski-Man iteration for- hierarchical ficed points and equilibrium problem. Bull. Aust. Math. Soc. 79, 187–200 (2009)
Marino G., Xu H.K.: Convergence of generalized proximal point algorithm. Comm. Pure Appl. Anal. 3, 791–808 (2004)
Martinet B.: Regularisation dinequations variationnelles par approximations successives. Rev. Francaise Inform. Recherche Operationnelle 4, 154–158 (1970)
Minty G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)
Moore C., Nnoli B.V.C.: Iterative solution of nonlinear equations involving set-valued uniformly accretive operators. Comput. Math. Appl. 42, 131–140 (2001)
Nakajo K.: Strong convergence to zeros of accretive operators in Banach spaces. J. Nonlinear Convex Anal. 7, 71–81 (2006)
Oettli W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 213–221 (1997)
Podilchuk C.I., Mammone R.J.: Image recovery by convex projections using a leastsquares constraint. J. Opt. Soc. Am. A 7, 517–521 (1990)
Rockafellar R.T.: Characterization of the subdifferentials of convex functions. Pac. J. Math. 17, 497–510 (1966)
Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Reich, S.: Constructive techniques for accretive and monotone operators. In: Applied Nonlinear Analysis (Proceedings of the third international conference, University of Texas, Arlington, Texas). Academic Press, New York, pp. 335–345 (1979)
Sahu, D.R., Wong, N.C., Yao, J.C.: A generalized hybrid steepest-descent method for variational inequalities in Banach spaces. Fixed Point Theory Appl. 1–28. doi:10.1155/2011/754702 (2011)
Sahu D.R.: Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 12(1), 187–204 (2011)
Sahu D.R., Yao J.C.: The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces. J. Glob. Optim. 51(4), 641–655 (2011)
Takahashi W., Ueda Y.: On Reich’s strong convergence theorems for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984)
Takahashi W.: Nonlinear Functional Analysis, Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)
Wong N.C., Sahu D.R., Yao J.C.: Solving variational inequalities involving nonexpansive type mappings. Nonlinear Anal. 69, 4732–4753 (2008)
Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Xu H.K.: A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)
Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26 (2010). doi:l10.1088/0266-5611/26/10/105018
Youla D.: Mathematical theory of image restoration by the method of convex projections. In: Stark, H. (eds) Image Recovery Theory and Applications, pp. 29–77. Academic Press, Orlando (1987)
Youla D.: On deterministic convergence of iterations of relaxed projection operators. J. Vis. Comm. Image Represent. 1, 12–20 (1990)
Zeidler E.: Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators. Springer, Berlin (1985)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sahu, D.R., Colao, V. & Marino, G. Strong convergence theorems for approximating common fixed points of families of nonexpansive mappings and applications. J Glob Optim 56, 1631–1651 (2013). https://doi.org/10.1007/s10898-012-9929-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-012-9929-9