Skip to main content
Log in

Maximal, potential and singular operators in vanishing generalized Morrey spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We introduce vanishing generalized Morrey spaces \({V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}\) with a general function \({\varphi(x, r)}\) defining the Morrey-type norm. Here \({\Pi \subseteq \Omega}\) is an arbitrary subset in Ω including the extremal cases \({\Pi = \{x_0\}, x_0 \in \Omega}\) and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces \({V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}\) we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type \({V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}\) -theorem for the potential operator I α. The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on \({\varphi(x, r)}\). No monotonicity type condition is imposed on \({\varphi(x, r)}\). In case \({\varphi}\) has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function \({\varphi}\). The proofs are based on pointwise estimates of the modulars defining the vanishing spaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams D.R.: A note on Riesz potentials. Duke Math. 42, 765–778 (1975)

    Article  Google Scholar 

  2. Arai H., Mizuhara T.: Morrey spaces on spaces of homogeneous type and estimates for \({\square_{b}}\) and the Cauchy-Szego projection. Math. Nachr. 185(1), 5–20 (1997)

    Article  Google Scholar 

  3. Bary N.K., Stechkin S.B.: Best approximations and differential properties of two conjugate functions. (Russian) Trudy Mosk. Mat. Obschestva. 5, 483–522 (1956)

    Google Scholar 

  4. Chiarenza F., Francaiosi M.: A generalization of a theorem by C. Miranda. Annali di Matematica pura ed applicata (IV) CLXI, 285–297 (1992)

    Article  Google Scholar 

  5. Chiarenza F., Frasca M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Math. 7, 273–279 (1987)

    Google Scholar 

  6. Duoandikoetxea, J.: Fourier analysis. Amer. Math. Soc. Graduate Studies vol. 29 (2001)

  7. Dzhumakaeva, G.T., Nauryzbaev, K.Zh.: Lebesgue-Morrey spaces. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. (5):7–12, 79 (1982)

  8. Giaquinta M.: Multiple integrals in the calculus of variations and non-linear elliptic systems. Princeton Univ. Press, Princeton (1983)

    Google Scholar 

  9. Hedberg L.I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36(2), 505–510 (1972)

    Article  Google Scholar 

  10. Karapetiants N.K., Samko N.: Weighted theorems on fractional integrals in the generalized Hölder spaces \({{H}_0^\varphi (x, \rho)}\) via the indices \({m_\varphi}\) and \({{M}_\varphi}\),. Fract. Calc. Appl. Anal. 7(4), 437–458 (2004)

    Google Scholar 

  11. Kufner A., John O., Fuçik S.: Function Spaces. Noordhoff International Publishing, Leyden, Publishing House Czechoslovak Academy of Sciences, Prague (1977)

    Google Scholar 

  12. Kurata K., Nishigaki S., Sugano S.: Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators. Proc. Amer. Math. Soc. 128, 1125–1134 (2000)

    Article  Google Scholar 

  13. Lukkassen D., Medell A., Persson L.-E., Samko N.: Hardy and singular operators in weighted generalized Morrey spaces with applications to singular integral equations. Math. Methods Appl. Sci. 35(11), 1300–1311 (2012)

    Article  Google Scholar 

  14. Maligranda L.: Indices and interpolation. Dissertationes Math. (Rozprawy Mat.) 234, 49 (1985)

    Google Scholar 

  15. Maligranda L.: Orlicz Spaces and Interpolation. Departamento de Matemática, Universidade Estadual de Campinas, Campinas SP Brazil (1989)

    Google Scholar 

  16. Matuszewska W., Orlicz W.: On some classes of functions with regard to their orders of growth. Studia Math. 26, 11–24 (1965)

    Google Scholar 

  17. Morrey C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43, 126–166 (1938)

    Article  Google Scholar 

  18. Mizuhara T.: Boundedness of some classical operators on generalized Morrey spaces. In: Igari, S. (ed.) Harmonic Analysis, ICM 90 Satellite Proceedings, pp. 183–189. Springer, Tokyo (1991)

    Chapter  Google Scholar 

  19. Nakai E.: The Campanato, Morrey and Holder spaces on spaces of homogeneous type. Studia Math 176, 1–19 (2006)

    Article  Google Scholar 

  20. Nakai E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    Article  Google Scholar 

  21. Nakai E.: On generalized fractional integrals. Taiwanese J. Math. 5(3), 587–602 (2001)

    Google Scholar 

  22. Nakai E., Sumitomo H.: On generalized Riesz potentials and spaces of some smooth functions. Sci. Math. Jpn. 54(3), 463–472 (2001)

    Google Scholar 

  23. Peetre J.: On the theory of \({\mathcal{L}_{p,\lambda}}\) spaces. J. Funct. Anal. 4, 71–87 (1969)

    Article  Google Scholar 

  24. Persson L.-E., Samko N.: Weighted Hardy and potential operators in the generalized Morrey spaces. J. Math. Anal. Appl. 377, 792–806 (2011)

    Article  Google Scholar 

  25. Persson L.-E., Samko N., Wall P.: Quasi-monotone weight functions and their characteristics and applications. Math. Inequal. Appl. 12(3), 685–705 (2012)

    Google Scholar 

  26. Ragusa M.A.: Commutators of fractional integral operators on vanishing-Morrey spaces. J. Global Optim. 40(1–3), 361–368 (2008)

    Article  Google Scholar 

  27. Samko N.: Parameter depending almost monotonic functions and their applications to dimensions in metric measure spaces. J. Funct. Spaces Appl. 7(1), 61–89 (2009)

    Article  Google Scholar 

  28. Samko N.: Weighted Hardy and singular operators in Morrey spaces. J. Math. Anal. Appl. 350, 56–72 (2009)

    Article  Google Scholar 

  29. Samko, N.: Weighted Hardy and potential operators in Morrey spaces. J. Funct. Spaces Appl. (1912). ID 678171 (2012)

  30. Sawano, Y., Sugano, S., Tanaka, H.: A note on generalized fractional integral operators on generalized Morrey spaces. Bound Value Probl. INDO. 835865. doi:10.1155/2009/835865 (2009)

  31. Shirai S.: Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces. Hokkaido Math. J. 35(3), 683–696 (2006)

    Google Scholar 

  32. Spanne S.: Some function spaces defined by using the mean oscillation over cubes. Ann. Scuola Norm. Sup. Pisa 19, 593–608 (1965)

    Google Scholar 

  33. Sugano S., Tanaka H.: Boundedness of fractional integral operators on generalized Morrey spaces. Sci. Math. Jpn. 58(3), 531–540 (2003)

    Google Scholar 

  34. Taylor M.E.: Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, volume 81 of Math. Surveys and Monogr. AMS, Providence, R.I (2000)

    Google Scholar 

  35. Vitanza, C.: Functions with vanishing Morrey norm and elliptic partial differential equations. In: Proceedings of methods of real analysis and partial differential equations, Capri, pp. 147–150. Springer (1990)

  36. Zorko C.T.: Morrey space. Proc. Amer. Math. Soc. 98(4), 586–592 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Samko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samko, N. Maximal, potential and singular operators in vanishing generalized Morrey spaces. J Glob Optim 57, 1385–1399 (2013). https://doi.org/10.1007/s10898-012-9997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9997-x

Keywords

Mathematics Subject Classification