Abstract
We introduce vanishing generalized Morrey spaces \({V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}\) with a general function \({\varphi(x, r)}\) defining the Morrey-type norm. Here \({\Pi \subseteq \Omega}\) is an arbitrary subset in Ω including the extremal cases \({\Pi = \{x_0\}, x_0 \in \Omega}\) and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces \({V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}\) we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type \({V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}\) -theorem for the potential operator I α. The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on \({\varphi(x, r)}\). No monotonicity type condition is imposed on \({\varphi(x, r)}\). In case \({\varphi}\) has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function \({\varphi}\). The proofs are based on pointwise estimates of the modulars defining the vanishing spaces
Similar content being viewed by others
References
Adams D.R.: A note on Riesz potentials. Duke Math. 42, 765–778 (1975)
Arai H., Mizuhara T.: Morrey spaces on spaces of homogeneous type and estimates for \({\square_{b}}\) and the Cauchy-Szego projection. Math. Nachr. 185(1), 5–20 (1997)
Bary N.K., Stechkin S.B.: Best approximations and differential properties of two conjugate functions. (Russian) Trudy Mosk. Mat. Obschestva. 5, 483–522 (1956)
Chiarenza F., Francaiosi M.: A generalization of a theorem by C. Miranda. Annali di Matematica pura ed applicata (IV) CLXI, 285–297 (1992)
Chiarenza F., Frasca M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Math. 7, 273–279 (1987)
Duoandikoetxea, J.: Fourier analysis. Amer. Math. Soc. Graduate Studies vol. 29 (2001)
Dzhumakaeva, G.T., Nauryzbaev, K.Zh.: Lebesgue-Morrey spaces. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. (5):7–12, 79 (1982)
Giaquinta M.: Multiple integrals in the calculus of variations and non-linear elliptic systems. Princeton Univ. Press, Princeton (1983)
Hedberg L.I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36(2), 505–510 (1972)
Karapetiants N.K., Samko N.: Weighted theorems on fractional integrals in the generalized Hölder spaces \({{H}_0^\varphi (x, \rho)}\) via the indices \({m_\varphi}\) and \({{M}_\varphi}\),. Fract. Calc. Appl. Anal. 7(4), 437–458 (2004)
Kufner A., John O., Fuçik S.: Function Spaces. Noordhoff International Publishing, Leyden, Publishing House Czechoslovak Academy of Sciences, Prague (1977)
Kurata K., Nishigaki S., Sugano S.: Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators. Proc. Amer. Math. Soc. 128, 1125–1134 (2000)
Lukkassen D., Medell A., Persson L.-E., Samko N.: Hardy and singular operators in weighted generalized Morrey spaces with applications to singular integral equations. Math. Methods Appl. Sci. 35(11), 1300–1311 (2012)
Maligranda L.: Indices and interpolation. Dissertationes Math. (Rozprawy Mat.) 234, 49 (1985)
Maligranda L.: Orlicz Spaces and Interpolation. Departamento de Matemática, Universidade Estadual de Campinas, Campinas SP Brazil (1989)
Matuszewska W., Orlicz W.: On some classes of functions with regard to their orders of growth. Studia Math. 26, 11–24 (1965)
Morrey C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43, 126–166 (1938)
Mizuhara T.: Boundedness of some classical operators on generalized Morrey spaces. In: Igari, S. (ed.) Harmonic Analysis, ICM 90 Satellite Proceedings, pp. 183–189. Springer, Tokyo (1991)
Nakai E.: The Campanato, Morrey and Holder spaces on spaces of homogeneous type. Studia Math 176, 1–19 (2006)
Nakai E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)
Nakai E.: On generalized fractional integrals. Taiwanese J. Math. 5(3), 587–602 (2001)
Nakai E., Sumitomo H.: On generalized Riesz potentials and spaces of some smooth functions. Sci. Math. Jpn. 54(3), 463–472 (2001)
Peetre J.: On the theory of \({\mathcal{L}_{p,\lambda}}\) spaces. J. Funct. Anal. 4, 71–87 (1969)
Persson L.-E., Samko N.: Weighted Hardy and potential operators in the generalized Morrey spaces. J. Math. Anal. Appl. 377, 792–806 (2011)
Persson L.-E., Samko N., Wall P.: Quasi-monotone weight functions and their characteristics and applications. Math. Inequal. Appl. 12(3), 685–705 (2012)
Ragusa M.A.: Commutators of fractional integral operators on vanishing-Morrey spaces. J. Global Optim. 40(1–3), 361–368 (2008)
Samko N.: Parameter depending almost monotonic functions and their applications to dimensions in metric measure spaces. J. Funct. Spaces Appl. 7(1), 61–89 (2009)
Samko N.: Weighted Hardy and singular operators in Morrey spaces. J. Math. Anal. Appl. 350, 56–72 (2009)
Samko, N.: Weighted Hardy and potential operators in Morrey spaces. J. Funct. Spaces Appl. (1912). ID 678171 (2012)
Sawano, Y., Sugano, S., Tanaka, H.: A note on generalized fractional integral operators on generalized Morrey spaces. Bound Value Probl. INDO. 835865. doi:10.1155/2009/835865 (2009)
Shirai S.: Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces. Hokkaido Math. J. 35(3), 683–696 (2006)
Spanne S.: Some function spaces defined by using the mean oscillation over cubes. Ann. Scuola Norm. Sup. Pisa 19, 593–608 (1965)
Sugano S., Tanaka H.: Boundedness of fractional integral operators on generalized Morrey spaces. Sci. Math. Jpn. 58(3), 531–540 (2003)
Taylor M.E.: Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, volume 81 of Math. Surveys and Monogr. AMS, Providence, R.I (2000)
Vitanza, C.: Functions with vanishing Morrey norm and elliptic partial differential equations. In: Proceedings of methods of real analysis and partial differential equations, Capri, pp. 147–150. Springer (1990)
Zorko C.T.: Morrey space. Proc. Amer. Math. Soc. 98(4), 586–592 (1986)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Samko, N. Maximal, potential and singular operators in vanishing generalized Morrey spaces. J Glob Optim 57, 1385–1399 (2013). https://doi.org/10.1007/s10898-012-9997-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-012-9997-x