Abstract
Meta-heuristic methods such as genetic algorithms (GA) and particle swarm optimization (PSO) have been extended to multi-objective optimization problems, and have been observed to be useful for finding good approximate Pareto optimal solutions. In order to improve the convergence and the diversity in the search of solutions using meta-heuristic methods, this paper suggests a new method to make offspring by utilizing the expected improvement (EI) and generalized data envelopment analysis (GDEA). In addition, the effectiveness of the proposed method will be investigated through several numerical examples in comparison with the conventional multi-objective GA and PSO methods.




















Similar content being viewed by others
Notes
These algorithms are implemented by jMetal [7], a Java-based framework of meta-heuristic algorithms for finding Pareto optimal solutions, while our algorithm is implemented in MatLab. The jMetal source files can be downloaded from the web-site http://sourceforge.net/projects/jmetal/.
References
Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)
Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2001)
Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2002)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, New York (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Proceedings of Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer (2005)
Durillo, J.J., Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E.: jMetal: A Java Framework for Developing Multi-Objective Optimization Metaheuristics. Technical report ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computacián, University of Málaga. E.T.S.I. Informática, Campus de Teatinos (2006)
Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. Found. Genet. Algorithms 2, 187–202 (1993)
Fonseca, C.M., Fleming, P.J.: Genetic algorithm for multiobjective optimization, formulation, discussion and generalization. In: Proceedings of the 5th International Conference: Genetic Algorithms, pp. 416–423 (1993)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Inc., Reading (1989)
Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 19, 345–383 (2001)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)
Nakayama, H.: Aspiration level approach to interactive multi-objective programming and its applications. In: Advances in Multicriteria Analysis, pp. 147–174. Kluwer Academic Publishers (1995)
Nebro, A.J., Durillo, J.J., García-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: Proceedings of IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, pp. 66–73 (2009)
Pareto, V.: Manuale di Economia Politica, Societa Editrice Libraria. Milano; Translated into English by A. S. Schwier. Manual of Political Economy. Macmilan (1906)
Reyes-Sierra, M., Coello, C.A.C.: Multiple objective particle swarm optimizers: a survey of the state-of-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)
Reyes Sierra, M., Coello, C.A.C.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Proceedings of Evolutionary Multi-Criterion Optimization (EMO 2005), vol. 3410, pp. 505–519 (2005)
Schonlau, M.: Computer experiments and global optimization. Ph.D. thesis, Univeristy of Waterloo (1997)
Schonlau, M., Welch, W.J., Jones, D.R.: Global versus local search in constrainted optimization of computer models. Technical report, Institute for Improvement in Quality and Productity, University of Waterloo, Canada (1997)
Yun, Y.B., Nakayama, H., Arakawa, M.: Multiple criteria decision making with generalized DEA and an aspiration level method. Eur. J. Oper. Res 158(3), 697–706 (2004)
Yun, Y.B., Nakayama, H., Tanino, T.: A generalized model for data envelopment analysis. Eur. J. Oper. Res 157(1), 87–105 (2004)
Yun, Y.B., Nakayama, H., Tanino, T., Arakawa, M.: Generation of efficient frontiers in multi-objective optimization problems by generalized data envelopment analysis. Eur. J. Oper. Res. 129(3), 586–595 (2001)
Yun, Y.B., Yoon, M., Nakayama, H.: Genetic algorithm for multi-objective optimization using GDEA. Adv. Nat. Comput. Part III(3612), 409–416 (2005)
Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Shaker Verlag (1999)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm; Technical report 103, Computer Engineering and Networks Laboratory (TIK). Department of Electrical Engineering, Swiss Federal Institute of Technology (ETH) (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yun, Y., Nakayama, H. Utilizing expected improvement and generalized data envelopment analysis in multi-objective genetic algorithms. J Glob Optim 57, 367–384 (2013). https://doi.org/10.1007/s10898-013-0038-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-013-0038-1