Skip to main content
Log in

High-order moments conservation in thermostatted kinetic models

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Recently the thermostatted kinetic framework has been proposed as mathematical model for studying nonequilibrium complex systems constrained to keep constant the total energy. The time evolution of the distribution function of the system is described by a nonlinear partial integro-differential equation with quadratic type nonlinearity coupled with the Gaussian isokinetic thermostat. This paper is concerned with further developments of this thermostatted framework. Specifically the term related to the Gaussian thermostat is adjusted in order to ensure the conservation of even high-order moments of the distribution function. The derived framework that constitutes a new paradigm for the derivation of specific models in the applied sciences, is analytically investigated. The global in time existence and uniqueness of the solution to the relative Cauchy problem is proved. Existence and moments conservation of stationary solutions are also performed. Suitable applications and research perspectives are outlined in the last section of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagland, V., Wennberg, B., Wondmagegne, Y.: Stationary states for the noncutoff Kac equation with a Gaussian thermostat. Nonlinearity 20, 583–604 (2007)

    Article  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale derivation of biological tissues models for mixtures of multicellular growing systems: application to flux-limited chemotaxis. Math. Models Methods Appl. Sci. 20, 1–29 (2010)

    Article  Google Scholar 

  3. Bellomo, N., Bianca, C., Delitala, M.: Complexity analysis and mathematical tools towards the modelling of living systems. Phys. Life Rev. 6, 144–175 (2009)

    Article  Google Scholar 

  4. Bellouquid, A., Bianca, C.: Modelling aggregation-fragmentation phenomena from kinetic to macroscopic scales. Math. Comput. Model. 52, 802–813 (2010)

    Article  Google Scholar 

  5. Bianca, C.: On the modelling of space dynamics in the kinetic theory for active particles. Math. Comput. Model. 51, 72–83 (2010)

    Article  Google Scholar 

  6. Bianca, C.: On the mathematical transport theory in microporous media: the billiard approach. Nonlinear Anal. Hybrid Syst. 4, 699–735 (2010)

    Article  Google Scholar 

  7. Bianca, C., Fermo, L.: Bifurcation diagrams for the moments of a kinetic type model of keloid-immune system competition. Comput. Mathem. Appl. 61, 277–288 (2011)

    Article  Google Scholar 

  8. Bianca, C., Pennisi, M.: The triplex vaccine effects in mammary carcinoma: a nonlinear model in tune with simtriplex. Nonlinear Anal. Real World Appl. 13, 1913–1940 (2012)

    Article  Google Scholar 

  9. Bianca, C.: Kinetic theory for active particles modelling coupled to Gaussian thermostats. Appl. Mathem. Sci. 6, 651–660 (2012)

    Google Scholar 

  10. Bianca, C.: An existence and uniqueness theorem for the Cauchy problem for thermostatted-KTAP models. Int. J. Math. Anal. 6, 813–824 (2012)

    Google Scholar 

  11. Bianca, C.: Onset of nonlinearity in thermostatted active particles models for complex systems. Nonlinear Anal. Real World Appl. 13, 2593–2608 (2012)

    Article  Google Scholar 

  12. Bianca, C.: Modeling complex systems by functional subsystems representation and thermostatted-KTAP methods. Appl. Math. Inf. Sci 6, 495–499 (2012)

    Google Scholar 

  13. Bianca, C.: Thermostatted kinetic equations as models for complex systems in physics and life sciences. Phys. Life Rev. doi:10.1016/j.plrev.2012.08.001

  14. Bianca, C., Coscia, V.: On the coupling of steady and adaptive velocity grids in vehicular traffic modelling. Appl. Math. Lett. 24, 149–155 (2011)

    Article  Google Scholar 

  15. Bonilla, L., Soler, J.: High field limit for the Vlasov–Poisson–Fokker–Planck system: a comparison of different perturbation methods. Math. Models Methods Appl. Sci. 11, 1457–1681 (2001)

    Article  Google Scholar 

  16. Chalub, F.A., Dolak-Struss, Y., Markowich, P., Oeltz, D., Schmeiser, C., Soref, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173–1198 (2006)

    Article  Google Scholar 

  17. Chalub, F.A., Markowich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefe für Mathematik 142, 123–141 (2004)

    Article  Google Scholar 

  18. Dalgaard, C.L., Strulik, H.: Energy distribution and economic growth. Resour. Energy Econ. 33, 782–797 (2011)

    Article  Google Scholar 

  19. Degond, P., Wennberg, B.: Mass and energy balance laws derived from high-field limits of thermostatted Boltzmann equations. Commun. Math. Sci. 5, 355–382 (2007)

    Article  Google Scholar 

  20. Dem’yanov, V.F., Giannessi, F., Karelin, V.V.: Optimal control problems via exact penalty functions. J. Global Optim. 12, 215–223 (1998)

    Article  Google Scholar 

  21. Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: hydrodynamic limits and spatio temporal mechanisms. J. Math. Biol. 51, 595–615 (2005)

    Article  Google Scholar 

  22. Erban, R., Othmer, H.G.: From individual to collective behaviour in chemotaxis. SIAM J. Appl. Math. 65, 361–391 (2004)

    Article  Google Scholar 

  23. Evans, D.J., Baranyai, A.: Mol. Phys. 77, 1209 (1992)

    Article  Google Scholar 

  24. Evans, D.J., Hoover, W.G., Failor, B.H., Moran, B., Ladd, A.J.C.: Non-equilibrium molecular-dynamics via Gauss principle of least constraint. Phys. Rev. A 8, 1016–1021 (1983)

    Article  Google Scholar 

  25. Ferrara, M., Guerrini, L.: On the dynamics of a three sector growth model. Int. Rev. Econ. 55, 275–283 (2008)

    Article  Google Scholar 

  26. Filbet, F., Laurencot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50, 189–207 (2005)

    Google Scholar 

  27. Gauss, K.F.: Uber ein Neues Allgemeines Grundgesatz der Mechanik (on a new fundamental law of mechanics). J. Reine Angew Math. 4, 232–235 (1829)

    Article  Google Scholar 

  28. Giannessi, F.: Semidifferentiable functions and necessary optimality conditions. J. Optim. Theory Appl. 60, 191–241 (1989)

    Article  Google Scholar 

  29. Giannessi, F., Khan, A.A.: Regularization of non-coercive quasi variational inequalities. Control Cybern. 29, 90–110 (2000)

    Google Scholar 

  30. Helbing, D.: A mathematical model for the behavior of pedestrians. Behav. Sci. 36, 298–310 (1991)

    Article  Google Scholar 

  31. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  32. Henderson, L.F.: On the fluid mechanic of human crowd motion. Transp. Res. 8, 509–515 (1975)

    Article  Google Scholar 

  33. Hoover, W.G., Ladd, A.J.C., Moran, B.: High-strain-rate plastic flow studied via non-equilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818–1820 (1982)

    Article  Google Scholar 

  34. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–183 (2003)

    Article  Google Scholar 

  35. Jepps, O.G., Rondoni, L.: Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition. J. Phys. A Math. Theor. 43, 133001 (2010)

    Article  Google Scholar 

  36. Joanne, N., Bright, D., Evans, D.J., Searles, D.J.: New observations regarding deterministic, time-reversible thermostats and Gauss’s principle of least constraint. J. Chem. Phys. 122, 194106 (2005)

    Article  Google Scholar 

  37. Lachowicz, M.: Micro and meso scales of description corresponding to a model of tissue invasion by solid tumours. Math. Models Methods Appl. Sci. 15, 1667–1683 (2005)

    Article  Google Scholar 

  38. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  Google Scholar 

  39. Ragusa, M.A.: Commutators of fractional integral operators on Vanishing–Morrey spaces. J. Glob. Optim. 40, 361–368 (2008)

    Article  Google Scholar 

  40. Ragusa, M.A.: Necessary and sufficient condition for a VMO function. Appl. Math. Comput. 218, 11952–11958 (2012)

    Article  Google Scholar 

  41. Ragusa, M.A.: Embeddings for Morrey–Lorentz spaces. J. Optim. Theory Appl. doi:10.1007/s10957-012-0012-y

  42. Sarman, S., Evans, D.J., Baranyai, A.: Physica A 208, 191 (1994)

    Article  Google Scholar 

  43. Solow, R.M.: A contribution to the theory of economic growth. Quart. J. Econ. 70, 65–94 (1956)

    Article  Google Scholar 

  44. Swan, T.W.: Economic growth and capital accumulation. Econ. Rec. 32, 334–361 (1956)

    Article  Google Scholar 

  45. Wennberg, B., Wondmagegne, Y.: Stationary states for the Kac equation with a Gaussian thermostat. Nonlinearity 14, 633–648 (2004)

    Article  Google Scholar 

  46. Wennberg, B., Wondmagegne, Y.: The Kac equation with a thermostatted force field. J. Stat. Phys. 124, 859–880 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the support by the FIRB project RBID08PP3J-Metodi matematici e relativi strumenti per la modellizzazione e la simulazione della formazione di tumori, competizione con il sistema immunitario, e conseguenti suggerimenti terapeutici, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Bianca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianca, C., Ferrara, M. & Guerrini, L. High-order moments conservation in thermostatted kinetic models. J Glob Optim 58, 389–404 (2014). https://doi.org/10.1007/s10898-013-0045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0045-2

Keywords

Navigation