Skip to main content
Log in

Evolutionary annealing: global optimization in measure spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Stochastic optimization methods such as evolutionary algorithms and Markov Chain Monte Carlo methods usually involve a Markov search of the optimization domain. Evolutionary annealing is an evolutionary algorithm that leverages all the information gathered by previous queries to the cost function. Evolutionary annealing can be viewed either as simulated annealing with improved sampling or as a non-Markovian selection mechanism for evolutionary algorithms. This article develops the basic algorithm and presents implementation details. Evolutionary annealing is a martingale-driven optimizer, where evaluation yields a source of increasingly refined information about the fitness function. A set of experiments with twelve standard global optimization benchmarks is performed to compare evolutionary annealing with six other stochastic optimization methods. Evolutionary annealing outperforms other methods on asymmetric, multimodal, non-separable benchmarks and exhibits strong performance on others. It is therefore a promising new approach to global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer, Norwell (1987)

  2. Ahn, C., Ramakrishna, R., Goldberg, D.: Real-coded bayesian optimization algorithm. In: Lozano, J., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation, Studies in Fuzziness and Soft Computing, vol. 192, pp. 51–73. Springer, Berlin (2006)

  3. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005). doi:10.1007/s10898-004-9972-2

    Article  Google Scholar 

  4. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: Evolutionary Computation, 2005. The 2005 IEEE Congress on, pp. 1769–1776 (2005)

  5. Bersini, H., Dorigo, M., Langerman, S., Seront, G., Gambardella, L.M.: Results of the first international contest on evolutionary optimisation (1st iceo). In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 611–615 (1996)

  6. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)

    Google Scholar 

  7. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micromachine and Human Science, pp. 39–43. Nagoya, Japan (1995)

  8. El-Beltagy, M., Nair, P.B,, Keane, A.J.: Metamodeling techniques for evolutionary optimization of computationally expensive problems: promises and limitations. In: GECCO’99, pp. 196–203 (1999)

  9. Genovese, C., Wasserman, L.: Rates of convergence for the gaussian mixture sieve. Ann. Stat. 28(4), 1105–1127 (2000)

    Google Scholar 

  10. Goldberg, D.E.: A note on boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing. Complex Syst. 4, 445–460 (1995)

    Google Scholar 

  11. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(4), 311–329 (1988)

    Google Scholar 

  12. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Google Scholar 

  13. Hastings, W.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Google Scholar 

  14. Jeong, I., Lee, J.: Adaptive simulated annealing genetic algorithm for system identification. Eng. Appl. Artif. Intell. 9(5), 523–532 (1996)

    Article  Google Scholar 

  15. Jeong, S., Murayama, M., Yamamoto, K.: Efficient optimization design method using kriging model. J. Aircraft 42(2), 413–420 (2005)

    Article  Google Scholar 

  16. de Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  18. Lockett, A., Miikkulainen, R.: Measure-theoretic evolutionary annealing. In: Proceedings of the 2011 IEEE Congress on, Evolutionary Computation (CEC-2011) (2011a)

  19. Lockett, A., Miikkulainen, R.: Real-space evolutionary annealing. In: Proceedings of the 2011 Genetic and Evolutionary Computation Conference (GECCO-2011) (2011b)

  20. Lockett, A.J.: General-purpose optimization through information maximization. PhD thesis, University of Texas at Austin (2012)

  21. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Google Scholar 

  22. Mühlenbein, H., Mahnig, T.: Mathematical analysis of evolutionary algorithms. In: Essays and Surveys in Metaheuristics, Operations Research/Computer Science Interface Series, Kluwer Academic Publisher, pp. 525–556 (2002)

  23. Mühlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function optimizer. Parallel Comput. 17, 619–632 (1991)

    Google Scholar 

  24. Mühlenbein, H., Mahnig, T., Rodriguez, A.O.: Schemata, distributions, and graphical models in evolutionary optimization. J. Heuristics 5, 215–247 (1999)

    Google Scholar 

  25. Pedersen, M.: Tuning & simplifying heuristical optimization. PhD thesis, University of Southampton (2010)

  26. Pelikan, M., Goldberg, D., Lobo, F.: A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 21, 5–20 (2002)

    Google Scholar 

  27. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces (1995)

  28. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms (1989)

  29. Vasile, M., Minisci, E., Locatelli, M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evol. Comput. 15(2), 267–281 (2011)

    Google Scholar 

  30. Whitley, L.D., Garrett, D., Watson, J.P.: Quad search and hybrid genetic algorithms. In: Proceedings of the Genetics and Evolutionary Computation Conference (GECCO-2003), vol. 2724, pp. 1468–1480. Springer, Chicago (2003)

  31. Yang, R.L.: Convergence of the simulated annealing algorithm for continuous global optimization. J. Optim. Theory Appl. 104(3), 691–716 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and advice. This research was supported in part by the NSF under grants DBI-0939454 and IIS-0915038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Lockett.

Additional information

This research was supported in part by NSF under grants DBI-0939454 and IIS-0915038.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockett, A.J., Miikkulainen, R. Evolutionary annealing: global optimization in measure spaces. J Glob Optim 58, 75–108 (2014). https://doi.org/10.1007/s10898-013-0064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0064-z

Keywords

Navigation