Skip to main content
Log in

Carbon tax based on the emission factor: a bilevel programming approach

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a bilevel programming approach to design an effective carbon tax scheme based on the production emission factor, used as an intensity measure, for a competitive market with multiple players. At the upper level, the government sets a target emission factor for the industry and taxes firms if they exceed that target. At the lower level, the industry sets output levels that maximize social welfare. The bilevel model is transformed to a linear MIP by replacing the lower level optimization problem by its KKT conditions, and linearizing the complementarity slackness conditions. We test the model in the context of the cement industry. The results show that the proposed model finds the optimal tax rate that induces firms to switch to less carbon-intensive fuels and reduces the overall emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Almutairi, H., Elhedhli, S.: Modeling, Analysis, and Evaluation of a Carbon Tax Policy based on the Emission Factor. University of Waterloo, Department of Management Sciences, Working Paper (2012)

  2. Bard, J.F., Plummer, J., Sourie, J.C.: A bilevel programming approach to determining tax credits for biofuel production. Eur. J. Oper. Res. 120, 30–46 (2000)

    Article  Google Scholar 

  3. Bard, J.F. (1998) Practical Bilevel Optimization. Algorithms and Applications, vol. 30 of Nonconvex Optimization and Its Applications. Kluwer, Dordrecht

  4. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153, 235–256 (2007)

    Article  Google Scholar 

  5. Dempe, S.: Foundations of Bilevel Programming, volume 61 of Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (2002)

    Google Scholar 

  6. Dudek, D., Golub, A.: Intensity targets: pathway or roadblock to preventing climate change while enhancing economic growth? Clima. Policy 3(Suppl. 2), S21–S28 (2003)

    Article  Google Scholar 

  7. Ellerman, A.D., Sue, Wing I.: Absolute versus intensity-based emission caps. Clim. Policy 3(Suppl.2), S7–S20 (2003)

    Article  Google Scholar 

  8. Environmental Protection Agency, Unit Conversions, Emissions Factors, and Other Reference Data. www.epa.gov/cpd/pdf/brochure.pdf. Accessed 27 July (2010)

  9. Fischer, C., Springborn, M.: Emissions targets and the real business cycle: Intensity targets versus caps or taxes. J. Environ. Econ. Manag. (2011). doi:10.1016/j.jeem.2011.04.005

  10. Fischer, C.: Combining rate-based and cap-and-trade emissions policies. Clim. Policy 3(S2), 89–103 (2003)

    Article  Google Scholar 

  11. Fuller, D.: Market Equilibrium Models with Continuous and Binary Variables. University of Waterloo, Department of Management Sciences, Working Paper (2008). Retrieved September 19, 2009 from http://www.mansci.uwaterloo.ca/~dfuller/cv/mixed-binary-eq-Fuller-25june08.pdf

  12. Gümüs, Z.H., Floudas, C.A.: Global optimization of nonlinear bilevel programming problems. J. Glob. Optim. 20, 1–31 (2001)

    Article  Google Scholar 

  13. Hazell, P.B.R., Norton, R.D.: Mathematical Programming for Economic Analysis in Agriculture, Chapter 8. Macmillan, New York (1986)

  14. Herzog, T., Baumert, K.A., Pershing, J.: Target: Intensity, An Analysis of Greenhouse Gas Intensity Targets. World Resources Institute, Washington, DC (2006). Retrieved May 2nd, 2011 from http://pdf.wri.org/target_intensity.pdf

  15. International Energy Agency, Tracking Industrial Energy Efficiency and \(\text{ CO }_2\) Emissions: In support of the G8 Plan of Action (2007). Retrieved August 20, 2010 from http://www.iea.org/textbase/nppdf/free/2007/tracking_emissions.pdf

  16. Jotzo, F., Pezzey, J.C.V.: Optimal intensity targets for greenhouse gas emissions trading under uncertainty. Environ. Resour. Econ. 38, 259–284 (2007)

    Article  Google Scholar 

  17. Kainuma, M., Matsuoka, Y., Morita, T., Hibino, G.: Development of an end-use model for analyzing policy options to reduce greenhouse gas emissions. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 29, 317–324 (1999)

    Article  Google Scholar 

  18. Kim, Y.-G., Baumert, K.: Reducing uncertainty through dual intensity targets. In: Baumert, K.A., Blanchard, O, Llose, S. Perkaus, J.F. (eds.) Building on the Kyoto Protocol: Options for Protecting the Climate. World Resource Institute, Washington (2002)

  19. Kuik, O.J., Mulder, M.: Emissions trading and competitiveness: pros and cons of relative and absolute schemes. Energy Policy 32, 737–745 (2004)

    Article  Google Scholar 

  20. Marschinski, R., Edenhofer, O.: Revisiting the case for intensity targets: better incentives and less uncertainty for developing countries? Energy Policy 38(9), 5048–5058 (2010)

    Article  Google Scholar 

  21. Newell, R.G., Pizer, W.A.: Indexed regulation. J. Environ. Econ. Manag. 56, 221–233 (2008)

    Article  Google Scholar 

  22. Natural Resources Canada: Canadian Cement Industry Energy Benchmarking Summary Report, 2010. Retrieved September 17, 2010 from http://oee.nrcan.gc.ca/Publications/industrial/cement-eng.pdf

  23. Natural Resources Canada: http://oee.nrcan.gc.ca/industrial/technical-info/benchmarking/csi/appendix-b.cfm?attr=24. Accessed September 17 (2010)

  24. Rivers, N., Jaccard, M.: Intensity-based climate change policies in Canada. Can. Public Policy 36, 409–428 (2010)

    Google Scholar 

  25. Pizer, W.A.: The case for intensity targets. Clim. Policy 5, 455–462 (2005)

    Google Scholar 

  26. Pizer, W.A.: Combining price and quantity controls to mitigate global climate change. J. Public Econ. 85, 409–434 (2002)

    Article  Google Scholar 

  27. Quirion, P.: Does uncertainty justify intensity emission caps? Resour. Energy Econ. 27, 343–353 (2005)

    Article  Google Scholar 

  28. Ruth, M., Worrell, E., Price, L.: Evaluating Clean Development Mechanism Projects in the Cement Industry Using a Process-Step Benchmarking Approach (LBNL-45346). Lawrence Berkeley National Laboratory, Berkeley (2000)

    Google Scholar 

  29. Springer, U.: The market for tradable GHG permits under the Kyoto protocol: a survey of model studies. Energy Econ. 25, 527–551 (2003)

    Article  Google Scholar 

  30. Sue Wing, I., Ellerman, A.D., Song, J.: Absolute vs. intensity limits for \(\text{ CO }_{2}\) emission control: performance under uncertainty. In: Tulkens, R., Guesnerie, R. (eds.) The Design of Climate Policy. MIT Press, Cambridge (2006)

  31. Webster, M., Sue, Wing I.: Second-best instruments for near-term climate policy: intensity targets Vs. the safety valve. J. Environ. Econ. Manag. 59, 250–259 (2010)

    Article  Google Scholar 

  32. Weitzman, M.L.: Prices vs quantities. Rev. Econ. Stud. 41, 477–491 (1974)

    Article  Google Scholar 

  33. Worrell, E., Price, L., Martin, N., Hendriks, C., Meida, L.O.: Carbon dioxide emissions from global cement industry. Ann. Rev. Energy Environ. 26, 303–329 (2001)

    Article  Google Scholar 

  34. Zhou, Y., Wanga, L., McCalley, J.D.: Designing effective and efficient incentive policies for renewable energy in generation expansion planning. Appl. Energy (2011). doi:10.1016/j.apenergy.2010.12.022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossa Almutairi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almutairi, H., Elhedhli, S. Carbon tax based on the emission factor: a bilevel programming approach. J Glob Optim 58, 795–815 (2014). https://doi.org/10.1007/s10898-013-0068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0068-8

Keywords

Navigation