Abstract
The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) seeks spanning trees with minimum total cost and minimum diameter. The bi-objective version generalizes the well-known bounded diameter minimum spanning tree problem. The bi-MDCST is a NP-hard problem and models several practical applications in transportation and network design. We propose a bi-objective multiflow formulation for the problem and effective multi-objective metaheuristics: a multi-objective evolutionary algorithm and a fast nondominated sorting genetic algorithm. Some guidelines on how to optimize the problem whenever a priority order can be established between the two objectives are provided. In addition, we present bi-MDCST polynomial cases and theoretical bounds on the search space. Results are reported for four representative test sets.





Similar content being viewed by others
References
Arroyo, J.E.C., Vieira, P.S., Vianna, D.S.: A GRASP algorithm for the multi-criteria minimum spanning tree problem. Ann. Oper. Res. 159, 125–133 (2008)
Bui, M., Butelle, F., Lavault, C.: A distributed algorithm for constructing the minimum spanning tree problem. J. Parallel Distrib. Comput. Arch. 64, 571–577 (2004)
Carrano, E.G., Fonseca, C.M., Takahashi, R.H.C., Pimenta, L.C.A., Neto, O.M.: A preliminary comparison of tree encoding schemes for evolutionary algorithms, pp. 1969–1974. Montreal, Canadá, (2007)
Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007)
Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer, New York (2006)
Cormen, T.H., Leiserson, C.E., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22, 425–460 (2000)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
Gouveia, L., Magnanti, T.L.: Network flow models for designing diameter-constrained minimum-spanning and Steiner trees. Networks 41, 159–173 (2003)
Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Math. Program. 128, 123–148 (2011)
Handler, G.Y.: Minimax location of a facility in an undirected graph. Transp. Sci. 7, 287–293 (1978)
Hassin, R., Tamir, A.: On the minimum diameter spanning tree problem. Inf. Process. Lett. 53(2), 109–111 (1995)
Ho, J.-M., Lee, D.T., Chang, C.-H., Wong, K.: Minimum diameter spanning trees and related problems. SIAM J. Comput. 20(5), 987–997 (1991)
Kumar, R., Singh, P.K., Chakrabarti, P.P.: Multiobjective EA approach for improved quality of solutions for spanning tree problem. In: Proceedings International Conference on Evolutionary Multi-Criterion Optimization (EMO), Lecture Notes in Computer Science, pp. 811–825. Springer (2005)
Kumar, R., Singh, P.K.: On quality performance of heuristic and evolutionary algorithms for biobjective minimum spanning trees. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, pp. 2259–2259. New York, NY, USA. ACM (2007)
Kumar, R., Rockett, P.I.: Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm. Evol. Comput. 10(3), 283–314 (2002)
Lemesre, J., Dhaenens, C., Talbi, E.G.: Parallel Partitioning Method (PPM): a new exact method to solve bi-objective problems. Comput. Oper. Res. 34(8), 2450–2462 (2007)
Lucena, A., Ribeiro, C., Santos, A.C.: A hybrid heuristic for the diameter constrained minimum spanning tree problem. J. Global Optim. 46, 363–381 (2010)
Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Bicriteria network design problems. J. Algorithms 28(1), 142–171 (1998)
Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO ’05, pp. 763–769, New York, NY, USA. ACM (2005)
Noronha, T.F., Santos, A.C., Ribeiro, C.C.: Constraint programming for the diameter constrained minimum spanning tree problem. Electron. Notes Discrete Math. 30, 93–98 (2008)
Noronha, T.F., Ribeiro, C.C., Santos, A.C.: Solving diameter-constrained minimum spanning tree problems by constraint programming. Int. Trans. Oper. Res. 17(5), 653–665 (2010)
Raidl, G.R., Julstrom, B.A.: Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem. In: Proceedings of the 18th ACM Symposium on Applied Computing, pp. 747–752. Melbourne (USA) (2003)
Raidl, G.R., Julstrom, B.A.: Edge sets: an effective evolutionary coding of spanning trees. IEEE Trans. Evol. Comput. 7(3), 225–239 (2003)
Ramos, R.M., Alonso, S., Sicilia, J., Gonzalez, C.: The problem of the optimal biobjective spanning tree. Eur. J. Oper. Res. 111(3), 617–628 (1998)
Requejo, C., Santos, E.: Greedy heuristics for the diameter-constrained minimum spanning tree problem. J. Math. Sci. 161, 930–943 (2009)
Saha, S., Kumar, R.: Bounded-diameter MST instances with hybridization of multi-objective EA. Int. J. Comput. Appl. 18(4), 17–25 (2011)
Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving diameter constrained minimum spanning tree problem in dense graphs. Lect. Notes Comput. Sci. 3059, 458–467 (2004)
Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)
Steiner, S., Radzik, T.: Computing all efficient solutions of the biobjective minimum spanning tree problem. Comput. Oper. Res. 35(1), 198–211 (2008)
Thomas, B.W., Chen, H., Campbell, A.M.: Network design for time-constrained delivery. Nav. Res. Logist. 55, 493–515 (2008)
Veldhuizen, D.A.V., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 204–211 (2000)
Wismer, D., Haimes, Y., Ladson, L.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)
Zhou, G., Gen, M.: Genetic algorithm approach on multi-criteria minimum spanning tree problem. Eur. J. Oper. Res. 114, 141–152 (1999)
Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117132 (2003)
Zopounidis, C., Pardalos, P.M.: Handbook of Multicriteria Analysis, vol. 103. Springer, New York (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Santos, A.C., Lima, D.R. & Aloise, D.J. Modeling and solving the bi-objective minimum diameter-cost spanning tree problem. J Glob Optim 60, 195–216 (2014). https://doi.org/10.1007/s10898-013-0124-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-013-0124-4