Skip to main content
Log in

Truss topology optimization with discrete design variables by outer approximation

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Several variants of an outer approximation method are proposed to solve truss topology optimization problems with discrete design variables to proven global optimality. The objective is to minimize the volume of the structure while satisfying constraints on the global stiffness of the structure under the applied loads. We extend the natural problem formulation by adding redundant force variables and force equilibrium constraints. This guarantees that the designs suggested by the relaxed master problems are capable of carrying the applied loads, a property which is generally not satisfied for classical outer approximation approaches applied to optimal design problems. A set of two- and three-dimensional benchmark problems are solved and the numerical results suggest that the proposed approaches are competitive with other special-purpose global optimization methods for the considered class of problems. Numerical comparisons indicate that the suggested outer approximation algorithms can outperform standard approaches suggested in the literature, especially on difficult problem instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Achtziger, W., Kočvara, M.: Structural topology optimization with eigenvalues. SIAM J. Optim. 18(4), 1129–1164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Achtziger, W., Stolpe, M.: Truss topology optimization with discrete design variables—guaranteed global optimality and benchmark examples. Struct. Multidiscip. Optim. 34(1), 1–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Achtziger, W., Stolpe, M.: Global optimization of truss topology with discrete bar areas—Part I: theory of relaxed problems. Comput. Optim. Appl. 40(2), 247–280 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Achtziger, W., Stolpe, M.: Global optimization of truss topology with discrete bar areas—Part II: implementation and numerical results. Comput. Optim. Appl. 44(2), 315–341 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Potential reduction polynomial time method for truss topology design. SIAM J. Optim. 4(3), 596–612 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Optimal design of engineering structures. OPTIMA Math. Program. Soc. Newsl. 47, 4–9 (1995)

    Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Handbook of Semidefinite Programming, chap. Structural Design. Kluwer, Dordrecht (2000)

    Google Scholar 

  9. Bendsøe, M., Sigmund, O.: Topology Optimization—Theory, Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  10. Bollapragada, S., Ghattas, O., Hooker, J.: Optimal design of truss structures by logical-based branch and cut. Oper. Res. 49(1), 42–51 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cerveira, A., Agra, A., Bastos, F., Gromicho, J.: New branch and bound approaches for truss topology design with discrete areas. In: Proceedings of the American Conference on Applied Mathematics. Recent, Advances in Applied Mathematics, pp. 228–233 (2009)

  12. Cook, R., Malkus, D., Plesha, M.: Concepts and Applications of Finite Element Analysis, 3rd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  13. Dorn, W., Gomory, R., Greenberg, H.: Automatic design of optimal structures. J. de Mecanique 3, 25–52 (1964)

    Google Scholar 

  14. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Faustino, A., Judice, J., Ribeiro, I., Neves, A.S.: An integer programming model for truss topology optimization. Investigação Operacional 26, 111–127 (2006)

    Google Scholar 

  16. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gill, P., Murray, W., Saunders, M.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22(4), 455–460 (1975)

    Article  MathSciNet  Google Scholar 

  19. Grossmann, I., Voudouris, V., Ghattas, O.: Recent Advances in Global Optimization, chap. Mixed-Integer Linear Programming Reformulations of Some Nonlinear Discrete Design Optimization Problems. Princeton University Press, Princeton (1992)

    Google Scholar 

  20. IBM: IBM ILOG CPLEX V12.1 User’s Manual for CPLEX (2012). http://www.ibm.com

  21. Kesavan, P., Allgor, R., Gatzke, E., Barton, P.: Outer approximation algorithms for separable non-convex mixed-integer nonlinear programs. Math. Program. 100, 517–535 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kočvara, M.: Truss topology design with integer variables made easy. Tech. rep., School of Mathematics, University of Birmingham, UK (2010). Preprint 2010/09. http://www.optimization-online.org

  23. Kravanja, S., Kravanja, Z., Bedenik, B.: The MINLP optimization approach to structural synthesis, Part I: a general view on simultaneous topology and parameter optimization. Int. J. Numer. Methods Eng. 43(2), 263–292 (1998)

    Article  MATH  Google Scholar 

  24. Kravanja, S., Kravanja, Z., Bedenik, B.: The MINLP optimization approach to structural synthesis, Part II: simultaneous topology, parameter and standard dimension optimization by the use of the linked two-phase MINLP strategy. Int. J. Numer. Methods Eng. 43(2), 293–328 (1998)

    Article  Google Scholar 

  25. Lund, E., Stegmann, J.: On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1), 109–124 (2005)

    Article  Google Scholar 

  26. Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Its Appl. 284, 193–228 (1998)

    Google Scholar 

  27. McCormick, G.: Computability of global solutions factorable nonconvex programs. i. Convex underestimating problems. Math. Program. 10(2), 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Muñoz, E., Stolpe, M.: Generalized Benders’ decomposition for topology optimization problems. J. Glob. Optim. 51(1), 149–183 (2011)

    Article  MATH  Google Scholar 

  29. Rasmussen, M., Stolpe, M.: Global optimization of discrete truss topology design problems using a parallel cut-and-branch method. Comput. Struct. 86(13–14), 1527–1538 (2008)

    Article  Google Scholar 

  30. Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62(14), 2009–2027 (2005)

    Article  MATH  Google Scholar 

  31. Stolpe, M.: On the reformulation of topology optimization problems as linear or convex quadratic mixed 0–1 programs. Optim. Eng. 8, 163–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stolpe, M.: On some fundamental properties of structural topology optimization problems. Struct. Multidisc. Optim. 41(5), 661–670 (2010)

    Article  MATH  Google Scholar 

  33. Stolpe, M., Svanberg, K.: Modeling topology optimization problems as linear mixed 0–1 programs. Int. J. Numer. Methods Eng. 57(5), 723–739 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Svanberg, K.: On the convexity and concavity of compliances. Struct. Optim. 7(1–2), 42–46 (1994)

    Article  Google Scholar 

  35. Svanberg, K., Werme, M.: On the validity of using small positive lower bounds on design variables in discrete topology optimization. Struct. Multidisc. Optim. 37, 325–334 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 45–95 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I extend sincere thanks to Professor Wolfgang Achtziger for valuable comments and suggestions on an early draft of this article. I would also like to thank the two anonymous reviewers for constructive comments and suggestions that improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Stolpe.

Additional information

The computing resources were funded by the Danish Center for Scientific Computing under the grant Optimal design of composite structures. The research is partially funded by The Danish Council for Independent Research—Technology and Production Sciences through the research project Optimal Design of Composite Structures under Manufacturing Constraints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolpe, M. Truss topology optimization with discrete design variables by outer approximation. J Glob Optim 61, 139–163 (2015). https://doi.org/10.1007/s10898-014-0142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0142-x

Keywords

Navigation