Abstract
Direct-type global optimization algorithms often spend an excessive number of function evaluations on problems with many local optima exploring suboptimal local minima, thereby delaying discovery of the global minimum. In this paper, a globally-biased simplicial partition Disimpl algorithm for global optimization of expensive Lipschitz continuous functions with an unknown Lipschitz constant is proposed. A scheme for an adaptive balancing of local and global information during the search is introduced, implemented, experimentally investigated, and compared with the well-known Direct and Direct l methods. Extensive numerical experiments executed on 800 multidimensional multiextremal test functions show a promising performance of the new acceleration technique with respect to competitors.




Similar content being viewed by others
References
Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H., Haftka, R.T.: Parallel global aircraft configuration design space exploration. In: A. Tentner (ed.) High Performance Computing Symposium 2000, pp. 54–66. Soc. for Computer Simulation Internat (2000)
Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002). doi:10.1023/A:1013729320435
Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001). doi:10.1023/A:1013123110266
Casado, L.G., García, I., Tóth-G, B., Hendrix, E.M.T.: On determining the cover of a simplex by spheres centered at its vertices. J. Global Optim. 50(4), 645–655 (2011). doi:10.1007/s10898-010-9524-x
Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Global Optim. 21(4), 415–432 (2001). doi:10.1023/A:1012782825166
Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl. 46(2), 265–278 (2010). doi:10.1007/s10589-009-9283-0
Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151(1), 175–190 (2011). doi:10.1007/s10957-011-9856-9
Dixon, L.C.W., Szegö, G.P. (eds.): Towards Global Optimisation, vol. 2. North-Holland Publishing Company, Amsterdam (1978)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). doi:10.1007/s101070100263
Elsakov, S.M., Shiryaev, V.I.: Homogeneous algorithms for multiextremal optimization. Comput. Math. Math. Phys. 50(10), 1642–1654 (2010). doi:10.1134/S0965542510100027
Evtushenko, Y.G., Posypkin, M.A.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013). doi:10.1007/s11590-012-0452-1
Finkel, D.E.: Global Optimization with the Direct Algorithm. Ph.D. thesis, North Carolina State University (2005)
Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Global Optim. 36(4), 597–608 (2006). doi:10.1007/s10898-006-9029-9
Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, vol. 6, 2nd edn. Springer, Berlin (2009)
Gablonsky, J.M.: Modifications of the Direct algorithm. Ph.D. thesis, North Carolina State University (2001)
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Global Optim. 21(1), 27–37 (2001). doi:10.1023/A:1017930332101
Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003). doi:10.1145/962437.962444
Gorodetsky, S.Y.: Paraboloid triangulation methods in solving multiextremal optimization problems with constraints for a class of functions with Lipschitz directional derivatives. Vestnik Lobachevsky State Univ. Nizhni Novgorod 1(1), 144–155 (2012). In Russian
Gorodetsky, S.Y.: Several approaches to generalization of the DIRECT method to problems with functional constraints. Vestnik of Lobachevsky State Univ. Nizhni Novgorod 6(1), 189–215 (2013). In Russian
Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the direct method for Lipschitz global optimization for a symmetric function. J. Global Optim. 57(4), 1193–1212 (2013). doi:10.1007/s10898-012-0020-3
Grishagin, V.A.: Operating characteristics of some global search algorithms. In: Problems of Stochastic Search, vol. 7, pp. 198–206. Zinatne, Riga (1978). In Russian
He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a DIRECT search algorithm. Comput. Optim. Appl. 23(1), 5–25 (2002). doi:10.1023/A:1019992822938
Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Publishers, Dordrech (1995)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)
Jones, D.R.: The direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Publishers, Dordrect (2001)
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993). doi:10.1007/BF00941892
Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003). doi:10.1007/s00211-002-0419-8
Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009). doi:10.1007/s11590-008-0110-9
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012). doi:10.1016/j.cam.2012.02.020
Kvasov, D.E., Sergeyev, Y.D.: Univariate geometric Lipschitz global optimization algorithms. Numer. Algebr. Control Optim. 2(1), 69–90 (2012). doi:10.3934/naco.2012.2.69
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74(9), 1435–1448 (2013). doi:10.1134/S0005117913090014
Lera, D., Sergeyev, Y.D.: Lipschitz and Hölder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010). doi:10.1016/j.apnum.2009.10.004
Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013). doi:10.1137/110859129
Liu, Q.: Linear scaling and the direct algorithm. J. Global Optim. 56, 1233–1245 (2013). doi:10.1007/s10898-012-9952-x
Liu, Q., Cheng, W.: A modified direct algorithm with bilevel partition. J. Global Optim. 1–17 (2013). doi:10.1007/s10898-013-0119-1
Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations for the solution for large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010). doi:10.1007/s10589-008-9217-2
Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45, 353–375 (2010). doi:10.1007/s10589-008-9217-2
Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009). doi:10.1137/080724083
Pardalos, P.M., Romeijn, H.E. (eds.): Handbook of Global Optimization, vol. 2. Kluwer Academic Publishers, Dordrecht (2002)
Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf. Technol. Control 36(4), 383–387 (2007)
Paulavičius, R., Žilinskas, J.: Influence of Lipschitz bounds on the speed of global optimization. Technol. Econ. Dev. Econ. 18(1), 54–66 (2012). doi:10.3846/20294913.2012.661170
Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Global Optim. 59(1), 23–40 (2014). doi:10.1007/s10898-013-0089-3
Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. (2014) Submitted
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7
Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010). doi:10.1007/s11590-009-0156-3
Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)
Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995). doi:10.1137/0805041
Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81(1), 127–146 (1998). doi:10.1007/BF01584848
Sergeyev, Y.D.: An efficient strategy for adaptive partition of \(N\)-dimensional intervals in the framework of diagonal algorithms. J. Optim. Theory Appl. 107(1), 145–168 (2000). doi: 10.1023/A:1004613001755
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006). doi:10.1137/040621132
Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008). In Russian
Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science (in 8 volumes), vol. 4, pp. 2812–2828. Wiley, New York (2011)
Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. SpringerBriefs in Optimization. Springer, New York (2013). doi:10.1007/978-1-4614-8042-6
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)
Todt, M.J.: The Computation of Fixed Points and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 24. Springer, Berlin (1976)
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)
Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012). doi:10.1016/j.amc.2011.07.051
Žilinskas, A., Žilinskas, J.: Global optimization based on a statistical model and simplicial partitioning. Comput. Math. Appl. 44(7), 957–967 (2002). doi:10.1016/S0898-1221(02)00206-7
Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Global Optim. 56(2), 265–277 (2013). doi:10.1007/s10898-011-9840-9
Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi:10.3846/1392-6292.2008.13.145-159
Acknowledgments
The authors would like to thank anonymous referees for their careful reading of the paper and insightful comments that helped us to improve the paper. Postdoctoral fellowship of R. Paulavičius is being funded by European Union Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania” within the framework of the Measure for Enhancing Mobility of Scholars and Other Researchers and the Promotion of Student Research (VP1-3.1-ŠMM-01) of the Program of Human Resources Development Action Plan. The research work of Ya. D. Sergeyev and D. E. Kvasov was partially supported by the INdAM–GNCS 2014 Research Project of the Italian National Group for Scientific Computation of the National Institute for Advanced Mathematics “F. Severi”. The closing part of this research has been done in the framework of the project “Multiextremal optimization: Efficient global search algorithms and supercomputing” submitted to the Russian Scientific Fund.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Panos M. Pardalos on the occasion of his 60th birthday.
Rights and permissions
About this article
Cite this article
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E. et al. Globally-biased Disimpl algorithm for expensive global optimization. J Glob Optim 59, 545–567 (2014). https://doi.org/10.1007/s10898-014-0180-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-014-0180-4