Skip to main content
Log in

Solving the planar p-median problem by variable neighborhood and concentric searches

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Two new approaches for the solution of the \(p\)-median problem in the plane are proposed. One is a Variable Neighborhood Search and the other one is a concentric search. Both approaches are enhanced by a front-end procedure for finding good starting solutions and a decomposition heuristic acting as a post optimization procedure. Computational results confirm the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bongartz, I., Calamai, P.H., Conn, A.R.: A projection method for \(\ell _p\) norm location-allocation problems. Math. Program. 66, 238–312 (1994)

    Article  MathSciNet  Google Scholar 

  2. Brimberg, J., Mladenović, N.: A variable neighbourhood algorithm for solving the continuous location-allocation problem. Stud. Locat. Anal. 10, 1–12 (1996)

    MATH  Google Scholar 

  3. Brimberg, J., Hansen, P., Mladenović, N., Taillard, E.: Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. Oper. Res. 48, 444–460 (2000)

    Article  Google Scholar 

  4. Brimberg, J., Hansen, P., Mladenović, N., Salhi, S.: A survey of solution methods for the continuous location-allocation problem. Int. J. Oper. Res. 5, 1–12 (2008)

    MATH  Google Scholar 

  5. Brimberg, J., Drezner, Z.: A new heuristic for solving the p-median problem in the plane. Comput. Oper. Res. 40, 427–437 (2013)

    Article  MathSciNet  Google Scholar 

  6. Brimberg, J., Drezner, Z., Mladenović, N., Salhi, S.: A new local search for continuous location problems. Eur. J. Oper. Res. 232, 256–265 (2014)

    Article  MATH  Google Scholar 

  7. Carlsson, S.: Improving worst-case behavior of heaps. BIT Numer. Math. 24, 14–18 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, R.: Solution of minisum and minimax location-allocation problems with euclidean distances. Nav. Res. Logist. Q. 30, 449–459 (1983)

    Article  Google Scholar 

  9. Chen, P.C., Hansen, P., Jaumard, B., Tuy, H.: A fast algorithm for the greedy interchange for large-scale clustering and median location problems by D.-C. programming. Oper. Res. 46, 548–562 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cooper, L.: Location-allocation problems. Oper. Res. 11, 331–343 (1963)

    Article  MATH  Google Scholar 

  11. Cooper, L.: Heuristic methods for location-allocation problems. SIAM Rev. 6, 37–53 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  12. Drezner, Z., Brimberg, J., Salhi, S., Mladenović, N.: Effective heuristics for solving the multi-source Weber problem. in review (2013)

  13. Drezner, Z.: The planar two-center and two-median problems. Transp. Sci. 18, 351–361 (1984)

    Article  MathSciNet  Google Scholar 

  14. Drezner, Z.: A note on accelerating the Weiszfeld procedure. Locat. Sci. 3, 275–279 (1996)

    Article  Google Scholar 

  15. Drezner, Z.: A new heuristic for the quadratic assignment problem. J. Appl. Math. Decis. Sci. 6, 163–173 (2002)

    Article  MathSciNet  Google Scholar 

  16. Drezner, Z., Klamroth, K., Schöbel, A., Wesolowsky, G.O.: The Weber problem. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 1–36. Springer, Berlin (2002)

    Chapter  Google Scholar 

  17. Drezner, Z.: A new genetic algorithm for the quadratic assignment problem. INFORMS J. Comput. 15, 320–330 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Drezner, Z.: The extended concentric tabu for the quadratic assignment problem. Eur. J. Oper. Res. 160, 416–422 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Drezner, Z., Hahn, P.M., Taillard, E.D.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139, 65–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Eilon, S., Watson-Gandy, C.D.T., Christofides, N.: Distribution Management. Hafner, New York (1971)

    Google Scholar 

  21. Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hansen, P., Mladenović, N.: Variable neighborhood search for the \(p\)-median. Locat. Sci. 5, 207–226 (1997)

    Article  MATH  Google Scholar 

  23. Krau, S.: Extensions du problème de Weber. PhD thesis, École Polytechnique de Montréal (1997)

  24. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Parallel Program. 9(3), 219–242 (1980)

    MATH  MathSciNet  Google Scholar 

  25. Love, R.F., Juel, H.: Properties and solution methods for large location-allocation problems. J. Oper. Res. Soc. 33, 443–452 (1982)

    MATH  Google Scholar 

  26. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13, 182–196 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Murtagh, B.A., Niwattisyawong, S.R.: An efficient method for the multi-depot location-allocation problem. J. Oper. Res. Soc. 33, 629–634 (1982)

    MATH  Google Scholar 

  29. Ohya, T., Iri, M., Murota, K.: Improvements of the incremental method of the Voronoi diagram with computational comparison of various algorithms. J. Oper. Res. Soc. Jpn. 27, 306–337 (1984)

    MATH  MathSciNet  Google Scholar 

  30. Reinelt, G.: TSLIB a traveling salesman library. ORSA J. Comput. 3, 376–384 (1991)

    Article  MATH  Google Scholar 

  31. Schöbel, A., Scholz, D.: The big cube small cube solution method for multidimensional facility location problems. Comput. Oper. Res. 37, 115–122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for Voronoi diagram. Int. J. Comput. Geom. Appl. 4, 179–228 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Taillard, É.: Heuristic methods for large centroid clustering problems. J. Heuristics 9, 51–73 (2003)

    Article  MATH  Google Scholar 

  34. Weber, A.: ÜBer Den Standort Der Industrien, 1. Teil: Reine Theorie Des Standortes. English Translation: on the Location of Industries. University of Chicago Press, Chicago, IL. Originally published in Tübingen, Germany in 1909 (1929)

  35. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku Math. J. 43, 355–386 (1936)

    Google Scholar 

  36. Wesolowsky, G.O.: The Weber problem: history and perspectives. Locat. Sci. 1, 5–23 (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for their time and constructive comments that helped to improve the presentation as well as the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Drezner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drezner, Z., Brimberg, J., Mladenović, N. et al. Solving the planar p-median problem by variable neighborhood and concentric searches. J Glob Optim 63, 501–514 (2015). https://doi.org/10.1007/s10898-014-0183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0183-1

Keywords