Skip to main content
Log in

The robust crew pairing problem: model and solution methodology

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a new robust formulation for the crew pairing problem where flight and connection times are random and vary within an interval. The model protects against infeasibility with a specified level of uncertainty and minimizes crew cost in the worst case. The resulting robust terms in the objective function and in the resource constraints are nonlinear. We apply Lagrangian relaxation to separate the nonlinear terms in the subproblem leading to a new robust formulation of the shortest path problem with resource constraints. We show that the nonlinear subproblem can be solved as a series of linear auxiliary problems. The proposed solution methodology was successful to solve industry instances in very competitive times and led to more robust crew pairing solutions as shown by simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A4A. Annual and per-minute cost of delays to U.S. airlines. http://www.airlines.org/Pages/Annual-and-Per-Minute-Cost-of-Delays-to-U.S.-Airlines.aspx, May (2012). Accessed 06 May 2014

  2. Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odoni, A., Peterson, E., Sherry, L., Trani, A., Zou, B.: Total delay impact study: a comprehensive assessment of the costs and impacts of flight delay in the united states. http://www.nextor.org/pubs/TDI_Report_Final_11_03_10.pdf (2010). Accessed 06 May 2014

  3. Ball, M.O., Magnanti, T.L., Monma, G.L.: Network Routing, 1st edn. Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  4. Barnhart, C., Hatay, L., Johnson, E.: Deadhead selection for the long-haul crew pairing problem. Oper. Res. 43(3), 491–499 (1995)

    Article  MATH  Google Scholar 

  5. Barnhart, C., Cohn, A., Johnson, E., Klabjan, D., Nemhauser, G.L., Vance, P.H.: Airline crew scheduling. In: Hall, R.W. (ed.) Handbook of Transportation Science. International Series in Operations Research & Management Science, vol. 56, pp. 517–560. Springer, US (2003). doi:10.1007/0-306-48058-1_14

  6. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. OR Lett. 25(1), 1–13 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88(3), 414–424 (2000)

    Article  MathSciNet  Google Scholar 

  9. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1), 49–71 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Birge, J., Louveaux, F.: Introduction to Stochastic Programming, 1st edn. Springer, New York (1997)

  12. Clarke, M.D.D., Ryan, D.M.: Airline industry operations research, In: Encyclopedia of Operations Research and Management Science, pp. 10–16. Springer, US (2011). doi:10.1007/1-4020-0611-X_24

  13. Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M., Soumis, F.: Crew pairing at air france. Eur. J. Oper. Res. 97(2), 245–259 (1997)

    Article  MATH  Google Scholar 

  14. Desaulniers, G., Desrosiers, J., Loachim, I., Solomon, M.M., Soumis, F., Villeneuve, D.: A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In: Crainic, T., Laporte, G. (eds.) Fleet Management and Logistics. Centre for Research on Transportation, pp. 57–93. Springer, US (1998). doi:10.1007/978-1-4615-5755-5_3

  15. Deshpande, V., Arkan, M.: The impact of airline flight schedules on flight delays. Manuf. Serv. Oper. Manag. 14(3), 423–440 (2012)

    Google Scholar 

  16. Desrosiers, J., Dumas, Y., Desrochers, M., Soumis, F., Sanso, B., Trudeau, P.: A breakthrough in airline crew scheduling. Technical Report G-91-11, Cahiers du GERAD (1991).

  17. Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F. : Chapter 2 Time constrained routing and scheduling. In: Ball M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing. Handbook in Operations Research and Management Science, vol. 8, pp. 35–139. Elsevier (1995). doi:10.1016/S0927-0507(05)80106-9

  18. Dunbar, M., Froyland, G., Wu, C.: Robust airline schedule planning: minimizing propagated delay in an integrated routing and crewing framework. Transp. Sci. 46(2), 204–216 (2012)

    Article  Google Scholar 

  19. Eggenberg, N. : Combining robustness and recovery for airline schedules. PhD thesis, École Polytechnique Fédérale de Lausanne, Suisse, Swiss (2009)

  20. Ehrgott, M., Ryan, D.: Constructing robust crew scheduleswith bicriteria optimization. J. Multi-Criteria Decis. Anal. 11(3), 139–150 (2002)

    Article  MATH  Google Scholar 

  21. Ferguson, J., Kara, A.Q., Hoffman, K., Sherry, L.: Estimating domestic U.S. airline cost of delay based on European model. Transp. Res. C Emerg. Technol. 33, 311–323 (2013)

    Article  Google Scholar 

  22. Gao, C., Johnson, E., Smith, B.: Integrated airline fleet and crew robust planning. Transp. Sci. 43(1), 2–16 (2009)

    Article  Google Scholar 

  23. Herroelen, W., Leus, R.: Project scheduling under uncertainty: survey and research potentials. Eur. J. Oper. Res. 165(2), 289–306 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Klabjan, D., Johnson, E.L., Nemhauser, G.L., Gelman, E., Ramaswamy, S.: Airline crew scheduling with regularity. Transp. Sci. 35(4), 359–374 (2001a)

    Article  MATH  Google Scholar 

  25. Klabjan, D., Johnson, E.L., Nemhauser, G.L., Gelman, E., Ramaswamy, S.: Solving large airline crew scheduling problems: random pairing generation and strong branching. Comput. Optim. Appl. 20(1), 73–91 (2001b)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kohl, N., Larsen, A., Larsen, J., Ross, A., Tiourine, S.: Airline disruption management—perspectives, experiences and outlook. J. Air Transp. Manag. 13(3), 149–162 (2007)

    Article  Google Scholar 

  27. Lan, S., Clarke, J., Barnhart, C.: Planning for robust airline operations: optimizing aircraft routings and flight departure times to minimize passenger disruptions. Transp. Sci. 40(1), 15–28 (2006)

    Article  Google Scholar 

  28. Lavoie, S., Minoux, M., Odier, E.: A new approach for crew pairing problems by column generation with an application to air transportation. Eur. J. Oper. Res. 35(1), 45–58 (1988)

    Article  MATH  Google Scholar 

  29. Makri, A., Klabjan, D.: A new pricing scheme for airline crew scheduling. INFORMS J. Comput. 16(1), 56–67 (2004)

    Article  MATH  Google Scholar 

  30. Minoux, M. : Column generation techniques in combinatorial optimization: a new application to crew pairing problems. In: XXIVth AGIFORS Symposium (1984)

  31. Sahinidis, N.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28(6–7), 971–983 (2004)

    Article  Google Scholar 

  32. Schaefer, A., Johnson, E., Kleywegt, A., Nemhauser, G. : Airline crew scheduling under uncertainty. Technical Report TLI-01-01, Georgia Institute of Technology (2000)

  33. Shebalov, S., Klabjan, D.: Robust airline crew pairing: move-up crews. Transp. Sci. 40(3), 300–312 (2006)

    Article  Google Scholar 

  34. Silver, N.: Fly early, arrive on-time. http://www.airlines.org/Pages/Annual-and-Per-Minute-Cost-of-Delays-to-U.S.-Airlines.aspx, April (2013). Accessed 06 May 2014

  35. Smith, B., Johnson, E.: Robust airline fleet assignment: imposing station purity using station decomposition. Transp. Sci. 40(4), 497–516 (2006)

    Article  Google Scholar 

  36. Sohoni, M., Lee, Y., Klabjan, D.: Robust airline scheduling under block time uncertainty. Transp. Sci. 45(4), 451–464 (2011)

    Article  Google Scholar 

  37. Soyster, A.: Convex programming with set-inclusive constraints and application to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tam, B., Ehrgott, M., Ryan, D., Zakeri, G.: A comparison of stochastic programming and bi-objective optimisation approaches to robust airline crew scheduling. OR Spectr. 33(1), 49–75 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tekiner, H., Birbil, S., Bulbul, K.: Robust crew pairing for managing extra flights. Comput. Oper. Res. 36(6), 2031–2048 (2009)

    Article  MATH  Google Scholar 

  40. Weide, O., Ryan, D., Ehrgott, M.: An iterative approach to robust and integrated aircraft routing and crew scheduling. Comput. Oper. Res. 37(5), 833–844 (2010)

    Article  MATH  Google Scholar 

  41. Yen, J., Birge, J.: A stochastic programming approach to the airline crew scheduling problem. Technical report, University of Washington, WA (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Gzara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Gzara, F. The robust crew pairing problem: model and solution methodology. J Glob Optim 62, 29–54 (2015). https://doi.org/10.1007/s10898-014-0222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0222-y

Keywords

Navigation