Skip to main content
Log in

An information guided framework for simulated annealing

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents an information guided framework for stochastic optimization with simulated annealing. Information gathered during randomized exploration of the search domain is used as feedback with progressively increasing gain to drive the optimization procedure, potentially causing the annealing temperature to rise during the algorithm’s execution. The benefits of reheating during the annealing process are shown in terms of significant improvement in the algorithm’s performance, while also staying within bounds for its convergence. A guided-annealing temperature is defined that incorporates information into the annealing schedule. The resulting algorithm has two phases: phase I performs nearly unrestricted exploration as a reconnaissance of the optimization domain and phase II “re-heats” the annealing procedure and exploits information gathered during phase I. Phase I flows seamlessly into phase II via an information effectiveness parameter without need for user input. Conditions are derived to prevent excessive reheating that may jeopardize convergence characteristics. Several examples are presented to test the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation Simulation and Control, 1st edn. Wiley-Interscience, Hoboken, NJ (2003)

    Book  Google Scholar 

  2. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton, NJ (1957)

    MATH  Google Scholar 

  3. Rust, J.: Using randomization to break the curse of dimensionality. Econometrica 65(3), 487–516 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Metropolis, N., Rosenbluth, A., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  5. Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Bioamietrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  6. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov chain Monte Carlo in practice. Chapman and Hall, London (1996)

    MATH  Google Scholar 

  7. Meyn, S., Tweedie, R.L.: Markov chains and stochastic stability, 2nd edn. Cambridge University Press, New York, NY (2009)

    Book  MATH  Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Styblinski, M.A., Tang, T.-S.: Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing. Neural Netw. 3, 467–483 (1990)

    Article  Google Scholar 

  10. Szu, H., Hartley, R.: Fast simulated annealing. Phys. Lett. A 122(3,4), 157–162 (1987)

    Article  Google Scholar 

  11. Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing for function optimization. Technometrics 28, 209–217 (1986)

    Article  MATH  Google Scholar 

  12. Brooks, S.P., Morgan, B.J.T.: Optimization using simulated annealing. J. R. Stat. Soc. Ser. D (The Statistician) 44(2), 241–257 (1995)

    Google Scholar 

  13. Salamon, P., Frost, R., Sibani, P.: Facts, conjectures, and improvements for simulated annealing, ser. SIAM, SIAM monographs on mathematical modeling and computation. Philadelphia (2002)

  14. Hoffmann, K.H., Franz, A., Salamon, P.: Structure of best possible strategies for finding ground states. Phys. Rev. E 66, 046706 (2002)

    Article  Google Scholar 

  15. Ruppeiner George, J.M.P., Salamon, P.: Ensemble approach to simulated annealing. J. Phys. 1(4), 455–470 (1991)

    Google Scholar 

  16. Andresen, B., Gordon, J.M.: Constant thermodynamic speed for minimizing entropy production in thermodynamic processes and simulated annealing. Phys. Rev. E 50, 4346–4351 (1994)

    Article  Google Scholar 

  17. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–329 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A.: Convergence and finite-time behavior of simulated annealing. Adv. Appl. Probab. 18(3), 747–771 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Andrieu, C., Breyer, L., Doucet, A., Murialdo, S. L.: Convergence of simulated annealing using Foster–Lyapunov criteria (2000)

  20. Vecchi, M.P., Kirkpatrick, S.: Global wiring by simulated annealing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2(4), 215–222 (1983)

    Article  Google Scholar 

  21. Fabian, V.: Simulated annealing simulated. Comput. Math. Appl. 33(1/2), 81–94 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rutenbar, R.A.: Simulated annealing algorithms: an overview. IEEE Circuits Dev. Mag. 5(1), 19–26 (1989)

    Article  Google Scholar 

  23. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)

    Article  Google Scholar 

  24. Maryak, J. L., Chin, D. C.: Global random optimization by simultaneous perturbation stochastic approximation. In: Proceedings of the American Control Conference, Arlington, VA, Jun 25–27, pp. 756–762 (2001)

  25. Romeo, F., Sangiovanni-Vincentelli, A.: Probabilistic hill climbing algorithms: properties and applications. EECS Department, University of California, Berkeley, Tech. Rep. (1984)

  26. Iosifescu, M.: Finite Markov Processes and Their Applications. Wiley, London (1980)

    MATH  Google Scholar 

  27. Isaacson, D., Madsen, R.W.: Markov Chains, Theory and Applications. Wiley, London (1976)

    MATH  Google Scholar 

  28. Seneta, E.: Non-negative Matrices and Markov Chains, Springer Series in Statistics. Springer, Berlin (2006)

    Google Scholar 

  29. Molga, M., Smutnicki, C.: Test functions for optimization needs (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Kumar, M. An information guided framework for simulated annealing. J Glob Optim 62, 131–154 (2015). https://doi.org/10.1007/s10898-014-0229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0229-4

Keywords