Skip to main content
Log in

Solving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Infinite horizon optimization (IHO) problems present a number of challenges for their solution, most notably, the inclusion of an infinite data set. This hurdle is often circumvented by approximating its solution by solving increasingly longer finite horizon truncations of the original infinite horizon problem. In this paper, we adopt a novel transformation that reduces the infinite dimensional IHO problem into an equivalent one dimensional optimization problem, i.e., minimizing a Hölder continuous objective function with known parameters over a closed and bounded interval of the real line. We exploit the characteristics of the transformed problem in one dimension and introduce an algorithm with a graphical implementation for solving the underlying infinite dimensional optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alden, J.M., Smith, R.L.: Rolling horizon procedures in nonhomogeneous markov decision processes. Oper. Res. 40, S183–S194 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bean, J.C., Smith, R.L.: Conditions for the existence of planning horizons. Math. Oper. Res 9, 391–401 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bean, J.C., Smith, R.L.: Conditions for the discovery of solution horizons. Math Program 59(2), 215–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chand, S., Hus, V., Sethi, S.: Forecast, solution and rolling horizons in operations management problem: a classified bibliography. M&SOM 4(1), 25–43 (2002)

    Article  Google Scholar 

  5. Ghate, A.: Infinite horizon problems. In: Cochran, J.J., Cox Jr., L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2011)

    Google Scholar 

  6. Gourdin, E., Jaumard, B., Ellaia, R.: Global optimization of Hölder functions. J. Glob. Optim. 8, 323–348 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hansen, P., Jaumard, B., Lu, S.H.: Global optimization of univariate lipschitz functions: I. Survey and properties, and II. New algorithms and computational comparison. Math Program 55(1), 251–272, 273–292 (1992)

  8. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Kluwer Academic Publishers, London (1995)

    MATH  Google Scholar 

  9. Huang, K., Ahmed, S.: A stochastic programming approach for planning horizons of infinite horizon capacity planning problems. Eur J Oper Res 200(1), 74–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiatsupaibul, S.: Markov Chain Monte Carlo Methods for Global Optimization. Ph.D. thesis, University of Michigan (2000)

  11. Lian, Z., Liu, L., Zhu, S.X.: Rolling-horizon replenishment: policies and performance analysis. Nav Res Logist 57(6), 489–502 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. McShane, E.J.: Extension of range of function. Bull Am Math Soc 40, 837–842 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ryan, S.M., Bean, J.C., Smith, R.L.: A tie-breaking algorithm for discrete infinite horizon optimization. Oper Res 40, S117–S126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schochetman, I.E., Smith, R.L.: Infinite horizon optimization. Math Oper Res 14, 559–574 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schochetman, I.E., Smith, R.L.: Finite dimensional approximation in infinite dimensional mathematical programming. Math Program 34(3), 307–333 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sharky, T.C.: Infinite linear programs. In: Cochran, J.J., Cox Jr., L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2011)

    Google Scholar 

  17. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM Journal on Numerical Analysis 9, 379–388 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, P., Hartman, J.C.: Case study: solving a rental fleet sizing model with a large time-space network. Eng Econo 55, 71–104 (2010)

    Article  Google Scholar 

  19. Zhang, B., Wood, G.R., Baritompa, W.P.: Multidimensional bisection: the performance and the context. J Glob Optim 3(3), 337–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under Grant CMMI-1333260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Smith.

Appendix

Appendix

Proof of Theorem 3

The proof that the piecewise linear extension preserves the Hölder condition can be carried out in a straightforward manner as follows. We are to show that for any pair \(x,y \in [0,1/2]\),

$$\begin{aligned} |\tilde{f}(x)-\tilde{f}(y)| \le M|x-y|^\alpha . \end{aligned}$$
(20)

Case 1: if both \(x,y \in Y\), (20) follows readily, since \(\tilde{f}=f\) by construction of \(\tilde{f}\), and f satisfies the Hölder condition by Theorem 2,

$$\begin{aligned} |\tilde{f}(x)-\tilde{f}(y)| = |f(x)-f(y)| \le M|x-y|^\alpha , \quad \text {for all } x,y\in Y. \end{aligned}$$
(21)

Case 2: if exactly one of \(x,y \notin Y\), WLOG, let \(x \in Y\), but \(y \notin Y\). Suppose \(y > x\). It is easy to check that the function g defined by

$$\begin{aligned} g(z) = \tilde{f}(x) + M(z-x)^\alpha = f(x) + M(z-x)^\alpha \end{aligned}$$

is a concave function over \(z \in [x,\infty )\). Therefore, the hypograph of g on [x, 1 / 2] is a convex set. Denote this convex set by K. Since \(y \notin Y\), there exist \(y_1 = \text {argmin}_{u\in Y}\{|y-u|: x \le u < y\}\), and \(y_2 = \text {argmin}_{u\in Y}\{|y-u|: u > y\}\). Since \(y_1, y_2 \in Y\), by (21), \((y_1,\tilde{f}(y_1)), (y_2,\tilde{f}(y_2)) \in K\). Since K is convex, \((y, \tilde{f}(y))\), which is the convex combination of \((y_1,\tilde{f}(y_1))\) and \((y_2,\tilde{f}(y_2))\), is also in K. Hence,

$$\begin{aligned} \tilde{f}(y) \le g(y) = \tilde{f}(x) + M(y-x)^\alpha . \end{aligned}$$
(22)

Similarly, it is easy to check that the function h defined by

$$\begin{aligned} h(z) = \tilde{f}(x) - M(z-x)^\alpha = f(x) - M(z-x)^\alpha \end{aligned}$$

is a convex function over \(z \in [x,\infty )\). Therefore, the epigraph of h on [x, 1 / 2] is a convex set. With this fact, applying the same argument, it follows that

$$\begin{aligned} \tilde{f}(y) \ge h(y) = \tilde{f}(x) - M(y-x)^\alpha . \end{aligned}$$
(23)

By (22) and (23),

$$\begin{aligned} |\tilde{f}(y)-\tilde{f}(x)| \le M(y-x)^\alpha . \end{aligned}$$

Similarly, when \(y < x\),

$$\begin{aligned} |\tilde{f}(y)-\tilde{f}(x)| \le M(x-y)^\alpha . \end{aligned}$$

Hence,

$$\begin{aligned} |\tilde{f}(x)-\tilde{f}(y)| \le M|x-y|^\alpha , \quad \text {for all } x\in Y, \text { for all } y\notin Y. \end{aligned}$$
(24)

Case 3: if both \(x,y \notin Y\), suppose \(y > x\). The function g defined by

$$\begin{aligned} g(z) = \tilde{f}(x) + M(z-x)^\alpha \end{aligned}$$

is a concave function over \(z \in [x,\infty )\). Therefore, the hypograph of g on [x, 1 / 2] is a convex set. Denote this convex set by K. Since \(y \notin Y\), there exist

$$\begin{aligned} y_1 = \left\{ \begin{array}{ll} \text {argmin}_{u\in Y}\{ |y-u|: x < u < y\} &{}\quad \text {if } \{ u: x < u < y, u\in Y\} \ne \emptyset ,\\ x &{} \quad \text {if } \{ u: x < u < y, u\in Y\} = \emptyset ,\\ \end{array} \right. \end{aligned}$$

and \(y_2 = \text {argmin}_{u\in Y}\{|y-u|: u > y\}\). Since \(y_2 \in Y\) and \(y_1 \in Y\) or \(y_1 = x\), by (24), we have \((y_1,\tilde{f}(y_1)), (y_2,\tilde{f}(y_2)) \in K\). Since K is convex, \((y, \tilde{f}(y))\), which is the convex combination of \((y_1,\tilde{f}(y_1))\) and \((y_2,\tilde{f}(y_2))\), is also in K. Hence,

$$\begin{aligned} \tilde{f}(y) \le g(y) = \tilde{f}(x) + M(y-x)^\alpha . \end{aligned}$$
(25)

Similarly, the function h defined by

$$\begin{aligned} h(z) = \tilde{f}(x) - M(z-x)^\alpha \end{aligned}$$

is a convex function over \(z \in [x,\infty )\). Therefore, the epigraph of h on [x, 1 / 2] is a convex set. With this fact, applying the same argument, it follows that

$$\begin{aligned} \tilde{f}(y) \ge h(y) = \tilde{f}(x) - M(y-x)^\alpha . \end{aligned}$$
(26)

By (25) and (26),

$$\begin{aligned} |\tilde{f}(y)-\tilde{f}(x)| \le M(y-x)^\alpha . \end{aligned}$$

Similarly, when \(y < x\),

$$\begin{aligned} |\tilde{f}(y)-\tilde{f}(x)| \le M(x-y)^\alpha . \end{aligned}$$

Hence,

$$\begin{aligned} |\tilde{f}(x)-\tilde{f}(y)| \le M|x-y|^\alpha , \quad \text {for all } x,y\notin Y. \end{aligned}$$
(27)

By (21), (24), and (27), the theorem is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiatsupaibul, S., Smith, R.L. & Zabinsky, Z.B. Solving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem. J Glob Optim 66, 711–727 (2016). https://doi.org/10.1007/s10898-016-0423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0423-7

Keywords