Skip to main content
Log in

Searching approximate global optimal Heilbronn configurations of nine points in the unit square via GPGPU computing

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we present a method of applying the GPGPU technology to compute the approximate optimal solution to the Heilbronn problem for nine points in the unit square, namely, points \(P_1,P_2,\ldots ,P_9\) in \([0,1]\times [0,1]\) so that the minimal area of triangles \(P_iP_jP_k\,(1\le i<j<k\le 9)\) gets the maximal value \(h_9(\Box )\). We construct nine rectangles with edge length 1 / 80 in the unit square which contain all optimal Heilbronn configurations up to possible rotation and reflection, and prove that \(\frac{9\sqrt{65}-55}{320}=0.054875999\cdots<h_9(\Box )<0.054878314\), the lower bound here comes from Comellas and Yebra’s paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brass, P., Moser, W., Pach, J.: Research Problems in Diecrete Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  2. Komlós, J., Pintz, J., Szemerédi, E.: A lower bound for Heilbronn’s problem. J. Lond. Math. Soc. S2–25(1), 13–24 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Roth, K.F.: On a problem of Heilbronn. J. Lond. Math. Soc. S1–26(3), 198–204 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  4. Komlós, J., Pintz, J., Szemerédi, E.: On Heilbronn’s triangle problem. J. Lond. Math. Soc. S2–24(3), 385–396 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldberg, M.: Maximizing the smallest triangle made by n points in a square. Math. Mag. 45(3), 135–144 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, L., Zhang, J., Zeng, Z.: On goldbergs conjecture: computing the first several heilbronn numbers. Technical report 91-074, University Bielefeld (1991)

  7. Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several heilbronn numbers and a computation. Chin. Ann. Math. Ser. A 13, 503–515 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Dress, A.W.M., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar convex boxy. In: Du, D.-Z., Pardalos, P.M., (eds.) Minimax and Applications, pp. 173–190. Springer, US (1995)

  9. Zeng, Z., Chen, L.: On the Heilbronn optimal configuration of seven points in the square. LNCS 6301, 196–224 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Chen, L., Zeng, Z., Zhou, W.: An upper bound of Heilbronn number for eight points in triangles. J. Comb. Optim. 28(4), 854–874 (2014). doi:10.1007/s10878-012-9585-5

  11. Comellas, F., Yebra, J.L.A.: New lower bounds for heilbronn numbers. Electr. J. Comb. 9(6), 1–10 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Audet, C., Hansen, P., Messine, F., Xiong, J.: The largest small octagon. J. Comb. Theory Ser. A. 98(1), 46–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Audet, C., Hansen, P., Messine, F., Perron, S.: The minimum diameter octagon with unit-length sides: Vincze’s wife’s octagon is suboptimal. J. Comb. Theory Ser. A. 108(1), 63–75 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter. J. Comb. Theory Ser. A. 114(1), 135–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henrion, D., Messine, F.: Finding largest small polygons with GloptiPoly. J. Glob. Optim. 56(3), 1017–1028 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weisstein, E.W.: Heilbronn triangle problem. From MathWorld–a Wolfram Web resource. http://mathworld.wolfram.com/HeilbronnTriangleProblem.html. (2011)

  17. Yang, L., Zhang, J., Zeng, Z.: On exact values of Heilbronn numbers for triangular regions. Technical report 91-098, University Bielefeld (1991)

  18. Yang, L., Zhang, J., Zeng, Z.: On the Heilbronn numbers of triangular regions. Acta Math. Sin. 37, 678–689 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Cantrell D.: The Heilbronn problem for triangles. http://www2.stetson.edu/~efriedma/heiltri/ (2011)

  20. Comité, F D., Delahaye, J.: Automated proofs in geometry: computing upper bounds for the Heilbronn problem for triangles. http://arxiv.org/abs/0911.4375v3 (2009)

  21. Comité, F.D., Delahaye, J.: A counterexample to Kahle-conjecture, new conjectures and automated proofs in geometry. http://www.lifl.fr/~decomite/triangle/triangles.html (2009)

  22. Tal, A.: Algorithms for Heilbronn’s triangle problem. Msc thesis, Israel Institute of Technology, Haifa. http://ftp.cs.technion.ac.il/pub/barequet/theses/tal-a-msc-thesis.pdf.gz (2009)

  23. Owens, J., Luebke, D., Govindaraju, N., Harris, M.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  24. Farber, R.: CUDA Application Design and Development. Morgan Kaufmann, Burlington (2011)

    Google Scholar 

  25. Markót, M.C.: Optimal packing of 28 equal circles in a unit square—the first reliable solution. Numer. Algorithms 37(1), 253–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kozikowski, K., Kubica, B.: Interval arithmetic and automatic differentiation on GPU using OpenCL. In: Manninen, P., Öster, P. (eds.), LNCS 7782, pp. 489–503 (2013)

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Marc Moreno Maza for his helpful corrections and suggestions. The authors also thank Prof. Dr. Ju Zhang and Chongqing Institute of Green and Intelligent Technology of the Chinese Academy of China for GPGPU support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochen Xu.

Additional information

This research was supported by the Natural Science Foundation of China (Nos. 11471209, 61321064), and Fundamental Research Funds for the Central Universities (No. 78210152).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xu, Y. & Zeng, Z. Searching approximate global optimal Heilbronn configurations of nine points in the unit square via GPGPU computing. J Glob Optim 68, 147–167 (2017). https://doi.org/10.1007/s10898-016-0453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0453-1

Keywords