Abstract
In this paper we present a method of applying the GPGPU technology to compute the approximate optimal solution to the Heilbronn problem for nine points in the unit square, namely, points \(P_1,P_2,\ldots ,P_9\) in \([0,1]\times [0,1]\) so that the minimal area of triangles \(P_iP_jP_k\,(1\le i<j<k\le 9)\) gets the maximal value \(h_9(\Box )\). We construct nine rectangles with edge length 1 / 80 in the unit square which contain all optimal Heilbronn configurations up to possible rotation and reflection, and prove that \(\frac{9\sqrt{65}-55}{320}=0.054875999\cdots<h_9(\Box )<0.054878314\), the lower bound here comes from Comellas and Yebra’s paper.







Similar content being viewed by others
References
Brass, P., Moser, W., Pach, J.: Research Problems in Diecrete Geometry. Springer, New York (2005)
Komlós, J., Pintz, J., Szemerédi, E.: A lower bound for Heilbronn’s problem. J. Lond. Math. Soc. S2–25(1), 13–24 (1982)
Roth, K.F.: On a problem of Heilbronn. J. Lond. Math. Soc. S1–26(3), 198–204 (1951)
Komlós, J., Pintz, J., Szemerédi, E.: On Heilbronn’s triangle problem. J. Lond. Math. Soc. S2–24(3), 385–396 (1981)
Goldberg, M.: Maximizing the smallest triangle made by n points in a square. Math. Mag. 45(3), 135–144 (1972)
Yang, L., Zhang, J., Zeng, Z.: On goldbergs conjecture: computing the first several heilbronn numbers. Technical report 91-074, University Bielefeld (1991)
Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several heilbronn numbers and a computation. Chin. Ann. Math. Ser. A 13, 503–515 (1992)
Dress, A.W.M., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar convex boxy. In: Du, D.-Z., Pardalos, P.M., (eds.) Minimax and Applications, pp. 173–190. Springer, US (1995)
Zeng, Z., Chen, L.: On the Heilbronn optimal configuration of seven points in the square. LNCS 6301, 196–224 (2011)
Chen, L., Zeng, Z., Zhou, W.: An upper bound of Heilbronn number for eight points in triangles. J. Comb. Optim. 28(4), 854–874 (2014). doi:10.1007/s10878-012-9585-5
Comellas, F., Yebra, J.L.A.: New lower bounds for heilbronn numbers. Electr. J. Comb. 9(6), 1–10 (2002)
Audet, C., Hansen, P., Messine, F., Xiong, J.: The largest small octagon. J. Comb. Theory Ser. A. 98(1), 46–59 (2002)
Audet, C., Hansen, P., Messine, F., Perron, S.: The minimum diameter octagon with unit-length sides: Vincze’s wife’s octagon is suboptimal. J. Comb. Theory Ser. A. 108(1), 63–75 (2004)
Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter. J. Comb. Theory Ser. A. 114(1), 135–150 (2007)
Henrion, D., Messine, F.: Finding largest small polygons with GloptiPoly. J. Glob. Optim. 56(3), 1017–1028 (2013)
Weisstein, E.W.: Heilbronn triangle problem. From MathWorld–a Wolfram Web resource. http://mathworld.wolfram.com/HeilbronnTriangleProblem.html. (2011)
Yang, L., Zhang, J., Zeng, Z.: On exact values of Heilbronn numbers for triangular regions. Technical report 91-098, University Bielefeld (1991)
Yang, L., Zhang, J., Zeng, Z.: On the Heilbronn numbers of triangular regions. Acta Math. Sin. 37, 678–689 (1994)
Cantrell D.: The Heilbronn problem for triangles. http://www2.stetson.edu/~efriedma/heiltri/ (2011)
Comité, F D., Delahaye, J.: Automated proofs in geometry: computing upper bounds for the Heilbronn problem for triangles. http://arxiv.org/abs/0911.4375v3 (2009)
Comité, F.D., Delahaye, J.: A counterexample to Kahle-conjecture, new conjectures and automated proofs in geometry. http://www.lifl.fr/~decomite/triangle/triangles.html (2009)
Tal, A.: Algorithms for Heilbronn’s triangle problem. Msc thesis, Israel Institute of Technology, Haifa. http://ftp.cs.technion.ac.il/pub/barequet/theses/tal-a-msc-thesis.pdf.gz (2009)
Owens, J., Luebke, D., Govindaraju, N., Harris, M.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)
Farber, R.: CUDA Application Design and Development. Morgan Kaufmann, Burlington (2011)
Markót, M.C.: Optimal packing of 28 equal circles in a unit square—the first reliable solution. Numer. Algorithms 37(1), 253–261 (2004)
Kozikowski, K., Kubica, B.: Interval arithmetic and automatic differentiation on GPU using OpenCL. In: Manninen, P., Öster, P. (eds.), LNCS 7782, pp. 489–503 (2013)
Acknowledgments
The authors would like to thank Prof. Dr. Marc Moreno Maza for his helpful corrections and suggestions. The authors also thank Prof. Dr. Ju Zhang and Chongqing Institute of Green and Intelligent Technology of the Chinese Academy of China for GPGPU support.
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported by the Natural Science Foundation of China (Nos. 11471209, 61321064), and Fundamental Research Funds for the Central Universities (No. 78210152).
Rights and permissions
About this article
Cite this article
Chen, L., Xu, Y. & Zeng, Z. Searching approximate global optimal Heilbronn configurations of nine points in the unit square via GPGPU computing. J Glob Optim 68, 147–167 (2017). https://doi.org/10.1007/s10898-016-0453-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-016-0453-1