Skip to main content
Log in

Quadratic convex reformulation for nonconvex binary quadratically constrained quadratic programming via surrogate constraint

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We investigate in this paper nonconvex binary quadratically constrained quadratic programming (QCQP) which arises in various real-life fields. We propose a novel approach of getting quadratic convex reformulation (QCR) for this class of optimization problem. Our approach employs quadratic surrogate functions and convexifies all the quadratic inequality constraints to construct QCR. The price of this approach is the introduction of an extra quadratic inequality. The “best” QCR among the proposed family, in terms that the bound of the corresponding continuous relaxation is best, can be found via solving a semidefinite programming problem. Furthermore, we prove that the bound obtained by continuous relaxation of our best QCR is as tight as Lagrangian bound of binary QCQP. Computational experiment is also conducted to illustrate the solution efficiency improvement of our best QCR when applied in off-the-shell software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Khayyal, F.A., Larsen, C., Van Voorhis, T.: A relaxation method for nonconvex quadratically constrained quadratic programs. J. Global Optim. 6, 215–230 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Global Optim. 43, 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87, 131–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17, 844–860 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109, 55–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Math. Program. 131, 381–401 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Billionnet, A., Elloumi, S., Lambert, A.: Exact quadratic convex reformulations of mixed-integer quadratically constrained problems. Math. Program. (2015). https://doi.org/10.1007/s10107-015-0921-2

    MATH  Google Scholar 

  8. Billionnet, A., Elloumi, S., Plateau, M.: Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math. 157, 1185–1197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S., Saxena, A.: Old wine in new bottle: the milp road to miqcp. Technical Report, Department of Management Sciences University of Iowa (2009). http://www.optimization-online.org/DB_FILE/2009/07/2338.pdf

  10. Cui, X.T., Zheng, X.J., Zhu, S.S., Sun, X.L.: Convex relaxations and miqcqp reformulations for a class of cardinality-constrained portfolio selection problems. J. Global Optim. 56, 1409–1423 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galli, L., Letchford, A.: A compact variant of the QCR method for quadratically constrained quadratic 0–1 programs. Optim. Lett. 8, 1213–1224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M., Johnson, D.: Computers and Intractability: An Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  13. Gower, J.: Euclidean distance geometry. Math. Sci. 7(1), 1–14 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1, (2014). http://cvxr.com/cvx

  15. Hammer, P., Rubin, A.: Some remarks on quadratic programming with 0–1 variables. RIRO 3, 67–79 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26, 143–154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klose, A., Drexl, A.: Facility location models for distribution system design. Europ. J. Oper. Res. 162, 4–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolbert, F., Wormald, L.: Robust portfolio optimization using second-order cone programming. In: Satchell, S. (ed.) Optimizing Optimization: The Next Generation of Optimization Applications & Theory, pp. 3–22. Academic Press and Elsevier, Amsterdam (2010)

    Google Scholar 

  19. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. McCormick, G.: Computability of global solutions to factorable nonconvex programs: part Iconvex underestimating problems. Math. program. 10, 147–175 (1976)

    Article  MATH  Google Scholar 

  21. Nesterov, Y., Nemirovsky, A.: Interior-Point Polynomial Methods in Convex Programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  22. Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero–one programming. Computing 45, 131–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raber, U.: A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. J. Global Optim. 13, 417–432 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130, 359–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sherali, H.D., Adams, W.P.: A Reformulation–Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  26. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14, 245–267 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, S.: Quadratic maximization and semidefinite relaxation. Math. Program. 87, 453–465 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, X.J., Sun, X.L., Li, D.: Convex relaxations for nonconvex quadratically constrained quadratic programming: matrix cone decomposition and polyhedral approximation. Math. program. 129, 301–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, X.J., Sun, X.L., Li, D.: Nonconvex quadratically constrained quadratic programming: best DC decompositions and their SDP representations. J. Global Optim. 50, 695–712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank three anonymous referees for their constructive suggestions and insightful comments, which helped improve the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueting Cui.

Additional information

This work was supported by National Natural Science Foundation of China under Grants 11671300, 11371103 and 71501122.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Pan, Y. & Cui, X. Quadratic convex reformulation for nonconvex binary quadratically constrained quadratic programming via surrogate constraint. J Glob Optim 70, 719–735 (2018). https://doi.org/10.1007/s10898-017-0591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0591-0

Keywords

Navigation