Skip to main content

Advertisement

Log in

An interleaved depth-first search method for the linear optimization problem with disjunctive constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Being an extension of classical linear programming, disjunctive programming has the ability to express the problem constraints as combinations of linear equalities and inequalities linked with logic AND and OR operations. All the existing theories such as generalized disjunctive programming, optimization modulo theories, linear optimization over arithmetic constraint formula, and mixed logical linear programming pose one commonality of branching among different solving techniques. However, branching constructs a depth-first search which may traverse a whole bad subtree when the branching makes a mistake ordering a bad successor. In this paper, we propose the interleaved depth-first search with stochastic local optimal increasing (IDFS-SLOI) method for solving the linear optimization problem with disjunctive constraints. Our technique searches depth-first several subtrees in turn, accelerates the search by subtree splitting, and uses efficient backtracking and pruning among the subtrees. Additionally, the local optimal solution is improved iteratively by constructing and solving a stochastic linear programming problem. We evaluate our approach against existing counterparts on the rate-monotonic optimization problem (RM-OPT) and the linear optimization with fuzzy relation inequalities problem (LOFRI). Experimental results show that for the tested instances, the IDFS-SLOI method performs better from performance perspective, especially promising results have been obtained for the larger three groups where the execution time is reduced by 85.6 and 51.6% for RM-OPT and LOFRI, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1998)

    MATH  Google Scholar 

  2. Lodi, A.: Mixed integer programming computation. In: Jnger, M., Liebling, TM., Naddef, D., Nemhauser, GL., Pulleyblank, WR., Reinelt, G., Rinaldi, G., Wolsey, LA. (eds.) 50 Years of Integer Programming 1958–2008, pp. 619–645. Springer (2010)

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Hooker, J.N., Osorio, M.A.: Mixed logical-linear programming. Discrete Appl. Math. 96, 395–442 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, L., Lyu, Y., Wang, C., Wu, J., Zhang, C., Min-Allah, N., Alhiyafi, J., Wang, Y.: Solving linear optimization over arithmetic constraint formula. J. Glob. Optim. 69, 1–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs. ACM Trans. Comput. Log. (TOCL) 16(2), 12 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. MSRR No. 330 (1974)

  8. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89(1), 3–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Raman, R., Grossmann, I.E.: Modelling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

    Article  Google Scholar 

  10. Vecchietti, A., Grossmann, I.: Computational experience with LogMIP solving linear and nonlinear disjunctive programming problems. In: Proceeding of FOCAPD, pp. 587–590. Citeseer (2004)

  11. Sawaya, N., Grossmann, I.: A hierarchy of relaxations for linear generalized disjunctive programming. Eur. J. Oper. Res. 216(1), 70–82 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Trespalacios, F., Grossmann, I.E.: Algorithmic approach for improved mixed-integer reformulations of convex generalized disjunctive programs. INFORMS J. Comput. 27(1), 59–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Trespalacios, F., Grossmann, I.E.: Cutting plane algorithm for convex generalized disjunctive programs. INFORMS J. Comput. 28(2), 209–222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirst, P., Rigterink, F., Stein, O.: Global optimization of disjunctive programs. J. Glob. Optim. 69, 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ruiz, J.P., Grossmann, I.E.: Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques. J. Glob. Optim. 67(1), 43–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H. (eds.) Handbook of Satisfiability, vol. 185, pp. 825–885. IOS Press (2009)

  17. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)

    Article  Google Scholar 

  18. Monniaux, D.: A survey of satisfiability modulo theory. In: International Workshop on Computer Algebra in Scientific Computing, pp. 401–425. Springer (2016)

  19. Silva, J.P.M., and Sakallah, K.A.: GRASP: a new search algorithm for satisfiability. In: Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design, pp. 220–227. IEEE Computer Society (1997)

  20. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat solver. In: Proceedings of the 38th Annual Design Automation Conference, pp. 530–535. ACM (2001)

  21. Gomes, C.P., Selman, B., Kautz, H., et al.: Boosting combinatorial search through randomization. In: AAAI/IAAI, vol. 98, pp. 431–437 (1998)

  22. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust sat-solver. Discrete Appl. Math. 155(12), 1549–1561 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hooker, J.N.: Logic, optimization, and constraint programming. INFORMS J. Comput. 14(4), 295–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meseguer, P.: Interleaved depth-first search. In: IJCAI, vol. 97, pp. 1382–1387 (1997)

  25. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. de la Tour, T.B.: An optimality result for clause form translation. J. Symb. Comput. 14(4), 283–301 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic optimization with SMT solvers. In: ACM SIGPLAN Notices, vol. 49, pp. 607–618. ACM (2014)

  28. Sebastiani, R., Tomasi, S.: Optimization in SMT with \({\cal{LA}}({\mathbb{Q}})\) cost functions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning, pp. 484–498. Springer (2012)

  29. Sawaya, N.W., Grossmann, I.E.: A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Chem. Eng. 29(9), 1891–1913 (2005)

    Article  Google Scholar 

  30. Trespalacios, F., Grossmann, I.E.: Improved Big-M reformulation for generalized disjunctive programs. Comput. Chem. Eng. 76, 98–103 (2015)

    Article  Google Scholar 

  31. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM Rev. 57(1), 3–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, J., Wang, Y., Wang, Y., Xing, J., Zeng, H.: Real-time system design based on logic or constrained optimization. J. Softw. 17(7), 1641–1649 (2006)

    Article  MATH  Google Scholar 

  33. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Min-Allah, N., Khan, S.U., Yongji, W.: Optimal task execution times for periodic tasks using nonlinear constrained optimization. J. Supercomput. 59(3), 1120–1138 (2012)

    Article  Google Scholar 

  35. Bini, E., Buttazzo, G.C.: The space of rate monotonic schedulability. In: 23rd IEEE on Real-Time Systems Symposium, 2002. RTSS 2002, pp. 169–178. IEEE (2002)

  36. Fang, S., Li, G.: Solving fuzzy relation equations with a linear objective function. Fuzzy Sets Syst. 103(1), 107–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ghodousian, A., Khorram, E.: Fuzzy linear optimization in the presence of the fuzzy relation inequality constraints with max–min composition. Inf. Sci. 178(2), 501–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Su, C., Guo, F.: Solving interval-valued fuzzy relation equations with a linear objective function. In: International Conference on Fuzzy Systems and Knowledge Discovery, pp. 380–385 (2009)

  39. Guo, F., Pang, L., Meng, D., Xia, Z.: An algorithm for solving optimization problems with fuzzy relational inequality constraints. Inf. Sci. 252, 20–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miyagi, H., Kinjo, I., Fan, Y.: Qualified decision-making using the fuzzy relation inequalities. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 2014–2018 (1998)

  41. Wang, H., Wang, C.H.: A fixed-charge model with fuzzy inequality constraints composed by max-product operator. Comput. Math. Appl. 36(7), 23–29 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the CAS/SAFEA International Partnership Program for Creative Research Teams, and the Natural Science Foundation of China under Grants 61379048 and 61672508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongji Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Chen, L., Zhang, C. et al. An interleaved depth-first search method for the linear optimization problem with disjunctive constraints. J Glob Optim 70, 737–756 (2018). https://doi.org/10.1007/s10898-017-0602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0602-1

Keywords

Navigation