Skip to main content
Log in

Nash game based efficient global optimization for large-scale design problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A novel Nash-EGO algorithm is presented to extend the usage of efficient global optimization (EGO) into large-scale optimizations by coupling with Nash game strategy. In our Nash-EGO, the large-scale design variables are split into several subsets by adopting Nash variable territory splitting, and the EGO optimizer acts as a player of specific Nash game. All the EGO players are coupled with each other and assigned to optimize their own subsets synchronously in parallel to produce the corresponding approximate optimal subsets. Doing in this way, the performance of EGO players could be expected to keep at a high level due to the fact that EGO players now take care of only their own small-scale subsets instead of facing the large-scale problem directly. A set of typical cases with a small number of variables are firstly selected to validate the performance of each EGO player mentioned. Then, the Nash-EGO proposed is tested by representative functions with a scale up to 30 design variables. Finally, more challenge cases with 90 design variables are constructed and investigated to mimic the real large-scale optimizations. It can be learned from the tests that, with respect to conventional EGO the present algorithm can always find near optimal solutions, which are more close to the theoretical values, and are achieved, moreover, less CPU time-consuming, up to hundreds times faster. All cases with 30 or 90 design variables have similar efficient performances, which indicates the present algorithm has the potential to cope with real large-scale optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Forrester, A.I.J., Keane, A.J., Bressloff, N.W.: Design and analysis of “Noisy” computer experiments. AIAA J. 44(10), 2331–2339 (2006)

    Article  Google Scholar 

  3. Li, C., Brezillon, J., Görtz, S.: Efficient global optimization of a natural laminar airfoil based on surrogate modeling. In: Dillmann, A., Heller, G., Krämer, E., Kreplin, H., Nitsche, W., Rist, U. (eds.) New Results in Numerical and Experimental Fluid Mechanics IX: Contributions to the 18th STAB/DGLR Symposium, pp. 53–63. Springer International Publishing, Cham (2014)

  4. Durantin, C., Marzat, J., Balesdent, M.: Analysis of multi-objective Kriging-based methods for constrained global optimization. Comput. Optim. Appl. 63(3), 903–926 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hamza, K., Shalaby, M.: A framework for parallelized efficient global optimization with application to vehicle crashworthiness optimization. Eng. Optim. 46(9), 1200–1221 (2014)

    Article  Google Scholar 

  6. Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44(4), 879–891 (2006)

    Article  Google Scholar 

  7. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010)

    Article  Google Scholar 

  8. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sóbester, A., Leary, S.J., Keane, A.J.: On the design of optimization strategies based on global response surface approximation models. J. Glob. Optim. 33(1), 31–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization, vol. 2, pp. 131–162. Springer, Heidelberg (2010)

    Google Scholar 

  11. Xu, S., Chen, H.: New type of multi-point updating strategy for EGO parallelization. Trans. NU-AA 30, 1–5 (2013)

    Google Scholar 

  12. Zhan, D., Qian, J., Cheng, Y.: Balancing global and local search in parallel efficient global optimization algorithms. J. Glob. Optim. 67(4), 873–892 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jurecka, F.: Robust Design Optimization Based on Metamodeling Techniques. Shaker, Aachen (2007)

    Google Scholar 

  14. Deng, F.: Research on Efficient Global Optimization Algorithm and Its Application. Nanjing University of Aeronautics and Astronautics, Ph.D. thesis (2011)

  15. Ur Rehman, S., Langelaar, M.: Efficient global robust optimization of unconstrained problems affected by parametric uncertainties. Struct. Multidiscip. Optim. 52(2), 319–336 (2015)

    Article  MathSciNet  Google Scholar 

  16. Jeong, S., Murayama, M., Yamamoto, K.: Efficient optimization design method using kriging model. J. Aircr. 42(2), 413–420 (2005)

    Article  Google Scholar 

  17. Forrester, A.I.J., Bressloff, N.W., Keane, A.J.: Optimization using surrogate models and partially converged computational fluid dynamics simulations. In: Proceedings of The Royal Society of London A: Mathematical, Physical and Engineering Sciences, London, UK, pp. 2177–2204 (2006)

  18. Deng, F., Qin, N., Liu, X., Yu, X., Zhao, N.: Shock control bump optimization for a low sweep supercritical wing. Sci. China Technol. Sci. 56(10), 2385–2390 (2013)

    Article  Google Scholar 

  19. Jo, Y., Choi, S.: Variable-fidelity aerodynamic design using gradient-enhanced kriging surrogate model with regression. In: Proceedings of 52nd AIAA Aerospace Sciences Meeting, National Harbor, Maryland, AIAA 2014-900 (2014)

  20. Gogulapati, A., Friedmann, P.P., Martins, J.R.R.A.: Optimization of flexible flapping-wing kinematics in hover. AIAA J. 52(10), 2342–2354 (2014)

    Article  Google Scholar 

  21. Li, C., Brezillon, J., Görtz, S.: Efficient global optimization of a natural laminar airfoil based on surrogate modeling. In: Dillmann, A., Heller, G., Mer, E.K., Kreplin, H., Nitsche, W., Rist, U. (eds.) New Results in Numerical and Experimental Fluid Mechanics IX, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 53–63. Springer International Publishing, Basel (2014)

    Chapter  Google Scholar 

  22. Kanazaki, M., Matsuno, T., Maeda, K., Kawazoe, H.: Efficient global optimization applied to wind tunnel evaluation-based optimization for improvement of flow control by plasma actuators. Eng. Optim. 47(9), 1226–1242 (2015)

    Article  Google Scholar 

  23. Namura, N., Shimoyama, K., Obayashi, S.: Kriging surrogate model enhanced by coordinate transformation of design space based on eigenvalue decomposition. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Guimarães, Portugal, pp. 321–335 (2015)

  24. Endo, N., Kanazaki, M., Murayama, M., Yamamoto, K.: Influence of engine intake/exhaust on wing design of civil aircraft by means of knowledge discovery techniques. In: Proceedings of 54th AIAA Aerospace Sciences Meeting, San Diego, California, AIAA 2016-0772. (2016)

  25. Othman, N., Kanazaki, M.: Trajectory and aerodynamic control optimization of civil aircraft descent under hazard situations based on high-fidelity aerodynamic database. In: Proceedings of 34th AIAA Applied Aerodynamics Conference, Washington, D.C, AIAA 2016-4041. (2016)

  26. Kenway, G.K.W., Martins, J.R.R.A.: Multipoint aerodynamic shape optimization investigations of the common research model wing. AIAA J. 54(1), 113–128 (2016)

    Article  Google Scholar 

  27. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2007)

    Article  Google Scholar 

  29. El Majd, B.A., Desideri, J., Habbal, A.: Aerodynamic and structural optimization of a business-jet wingshape by a Nash game and an adapted split of variables. Mécanique Ind 11(3–4), 209–214 (2010)

    Article  Google Scholar 

  30. Périaux, J., Greiner, D.: Efficient parallel Nash genetic algorithm for solving inverse problems in structural engineering. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds.) Mathematical Modeling and Optimization of Complex Structures, pp. 205–228. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  31. Greiner, D., Periaux, J., Emperador, J.M., Galván, B., Winter, G.: Game theory based evolutionary algorithms: a review with Nash applications in structural engineering optimization problems. Arch. Comput. Methods Eng. 24(4), 703–750 (2017)

    Article  MathSciNet  Google Scholar 

  32. Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr Inst. Min. Metall. 52(6), 119–139 (1951)

    Google Scholar 

  33. Matheron, G.M.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  34. Sekishiro, M., Venter, G., Balabanov, V.: Combined kriging and gradient-based optimization method. In: Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia, pp. 6–8 (2006)

  35. Kenny, Q.Y., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric Latin hypercube designs. J. Stat. Plan. Inference 90(1), 145–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  37. Shan, S., Wang, G.G.: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct. Multidiscip. Optim. 41(2), 219–241 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rumpfkeil, M.P.: Optimizations under uncertainty using gradients, Hessians, and surrogate models. AIAA J. 51(2), 444–451 (2013)

    Article  Google Scholar 

  39. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee, D., Gonzalez, L.F., Periaux, J., Srinivas, K., Onate, E.: Hybrid-game strategies for multi-objective design optimization in engineering. Comput. Fluids 47(1), 189–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Anders O. Göran, Marcus M. Edvall.: User’s guide for TOMLAB/CGO1. https://tomopt.com/tomlab/download/manuals.php (2008). Accessed 7 Sep 2017

  42. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization KanGAL report. Technical report, Singapore (2005)

  43. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report, Singapore (2013)

  44. Sasena, M., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278 (2002)

    Article  Google Scholar 

  45. Xiong, G., Shi, D., Duan, X.: Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning. Comput. Oper. Res. 41, 125–139 (2014)

    Article  MATH  Google Scholar 

  46. Li, X., Yin, M.: Multi-operator based biogeography based optimization with mutation for global numerical optimization. Comput. Math. Appl. 64(9), 2833–2844 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 11172134) and the Foundation of “Jiangsu Innovation Program for Graduate Education” (Grant No. KYLX_0218). We would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongquan Chen.

Appendices

Formulas of test functions in Sect. 3.1

(1) Branin function

$$\begin{aligned} f_1 =\left( {x_2 -\frac{5.1}{4\pi ^{2}}x_1^2 +\frac{5}{\pi }x_1 -6} \right) ^{2}+10\left( {1-\frac{1}{8\pi }}\right) \cos x_1 +10 \end{aligned}$$
(A. 1)

where \(-5\le x_1 \le 10\), \(0\le x_2 \le 15\), its minimum is 0.3979.

(2) Hartman 3 function

$$\begin{aligned} f_2 =-\mathop \sum \limits _{i=1}^4 c_i exp\left[ -\mathop \sum \limits _{j=1}^3 a_{ij} (x_j -p_{ij} )^{2}\right] \end{aligned}$$
(A. 2)

where \(a_{ij} =\left[ {{\begin{array}{lll} 3 &{}1&{} {30} \\ {0.1}&{} {10}&{} {35} \\ 3&{} {10}&{} {30} \\ {0.1}&{} {10}&{} {35} \\ \end{array} }} \right] \), \(c_{ij} =\left[ {{\begin{array}{l} 1 \\ {1.2} \\ 3 \\ {3.2} \\ \end{array} }} \right] \), \(p_{ij} =\left[ {{\begin{array}{lll} {0.3689}&{} {0.117}&{} {0.2673} \\ {0.4699}&{} {0.4389}&{} {0.747} \\ {0.1091}&{} {0.8732}&{} {0.5547} \\ {0.03815}&{} {0.5743}&{} {0.8828} \\ \end{array} }} \right] \), \(0\le x_i \le 1\), \(i=1, 2, 3\), its minimum is \(-3.8628\).

(3) Hartman 6 function

$$\begin{aligned} f_3 =-\mathop \sum \limits _{i=1}^4 c_i exp\left[ -\mathop \sum \limits _{j=1}^6 a_{ij} (x_j -p_{ij} )^{2}\right] \end{aligned}$$
(A. 3)

where \(a_{ij} =\left[ {\begin{array}{llllll} {10}&{} 3&{} {17} &{}{3.5}&{} {1.7}&{} 8 \\ {0.05}&{} {10}&{} {17} &{} {0.1}&{} 8&{} {14} \\ 3&{} {3.5}&{} {1.7} &{} {10}&{} {17}&{} 8 \\ {17}&{} 8&{} {0.05} &{} 0&{} {0.}&{} {14} \\ \end{array} } \right] \), \(c_{ij} =\left[ {{\begin{array}{l} 1 \\ {1.2} \\ 3 \\ {3.2} \\ \end{array} }} \right] \), \(0\le x_i \le 1\), \(i=1,2,\ldots ,6\),

\(p_{ij} =\left[ {{\begin{array}{llllll} {0.1312}&{} {0.1696}&{} {0.5569} &{} {0.0124}&{} {0.8283}&{} {0.5886} \\ {0.2329}&{} {0.4135}&{} {0.8307} &{} {0.3736}&{} {0.1004}&{} {0.9991} \\ {0.2348}&{} {0.1451}&{} {0.3522} &{} {0.2883}&{} {0.3047}&{} {0.6650} \\ {0.4047}&{} {0.8828}&{} {0.8732} &{} {0.5743}&{} {0.1091}&{} {0.0381} \\ \end{array} }} \right] ,\) its minimum is \(-3.3224\).

Formulas of test functions in Sect. 3.2

(1) Sphere function

$$\begin{aligned} f_4 =\sum \limits _{i=1}^D {x_i^2 } \end{aligned}$$
(A. 4)

where D is the number of variables, \(-100\le x_i \le 100\), its minimum is 0.

(2) Elliptic function

$$\begin{aligned} f_5 =\sum \limits _{i=1}^D {({10^{6}})^{\left[ {{({i-1} )}/{({D-1})}} \right] }x_i^2 } \end{aligned}$$
(A. 5)

where D is the number of variables, \(-10\le x_i \le 10\), its minimum is 0.

(3) Ackley function

$$\begin{aligned} f_6 =-20\exp \left( {-0.2\sqrt{D^{-1}\sum _{i=1}^D {x_i^2 } }} \right) -\exp \left( {D^{-1}\sum _{i=1}^D {\cos 2\pi x_i } } \right) +20+e \end{aligned}$$
(A. 6)

where D is the number of variables, \(-32\le x_i \le 32\), its minimum is 0.

(4) Rastrigin function

$$\begin{aligned} f_7 =\sum \limits _{i=1}^D {\left[ {x_i^2 -10\cos ({2\pi x_i } )+10} \right] } \end{aligned}$$
(A. 7)

where D is the number of variables, \(-5.12\le x_i \le 5.12\), its minimum is 0.

(5) Shifted and rotated Ackley function

$$\begin{aligned} f_6 =-20\exp \left( {-0.2\sqrt{D^{-1}\sum _{i=1}^D {z_i^2 } }} \right) -\exp \left( {D^{-1}\sum _{i=1}^D {\cos 2\pi z_i } } \right) +20+e+f_{bias}\nonumber \\ \end{aligned}$$
(A. 8)

where \(\mathbf{z}=\mathbf{M}({\mathbf{x-o}})\), \(\mathbf{z}=({z_1 , z_2 , \ldots , z_D })\), \(x=({x_1 , x_2 , \ldots , x_D })\), D is the number of variables, \(\mathbf{M}\) is the linear transformation matrix, and \(\mathbf{o}\) is the shifted global optimum, their values can be refer to Ref. [42, 43]. \(-32\le x_i \le 32\), its minimum is \(f_{bias} \), in this paper, it is set as \(f_{bias} =-140\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Chen, H. Nash game based efficient global optimization for large-scale design problems. J Glob Optim 71, 361–381 (2018). https://doi.org/10.1007/s10898-018-0608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0608-3

Keywords

Navigation