Abstract
We propose a new deterministic global optimization algorithm for solving mixed-integer bilinear programs. It relies on a two-stage decomposition strategy featuring mixed-integer linear programming relaxations to compute estimates of the global optimum, and constrained non-linear versions of the original non-convex mixed-integer nonlinear program to find feasible solutions. As an alternative to spatial branch-and-bound with bilinear envelopes, we use extensively piecewise relaxations for computing estimates and reducing variable domain through optimality-based bound tightening. The novelty is that the number of partitions, a critical tuning parameter affecting the quality of the relaxation and computational time, increases and decreases dynamically based on the computational requirements of the previous iteration. Specifically, the algorithm alternates between piecewise McCormick and normalized multiparametric disaggregation. When solving ten benchmark problems from the literature, we obtain the same or better optimality gaps than two commercial global optimization solvers.









Similar content being viewed by others
References
Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52, 1027–1037 (2006)
Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35, 876–892 (2011)
Castro, P.M.: New MINLP formulation for the multiperiod pooling problem. AIChE J. 61, 3728–3738 (2015)
Lotero, I., Trespalacios, F., Grossmann, I.E., Papageorgiou, D.J., Cheon, M.-S.: An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem. Comput. Chem. Eng. 87, 13–35 (2016)
Quesada, I., Grossmann, I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19, 1219–1242 (1995)
Lee, S., Grossmann, I.E.: Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27, 1557–1575 (2003)
Faria, D.C., Bagajewicz, M.J.: Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems. Comput. Chem. Eng. 35, 446–455 (2011)
Rubio-Castro, E., Ponce-Ortega, J.M., Serna-González, M., El-Halwagi, M.M., Pham, V.: Global optimization in property-based interplant water integration. AIChE J. 59, 813–833 (2013)
Alnouri, S., Linke, P., El-Halwagi, M.M.: Spatially constrained interplant water network synthesis with water treatment options. In: Eden, M.R., Siirola, J.D.S., Towler, G.P. (eds.) Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design, pp. 237–242. Elsevier, Amsterdam (2014)
Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)
Koleva, M.N., Styan, C.A., Papageorgiou, L.G.: Optimisation approaches for the synthesis of water treatment plants. Comput. Chem. Eng. (2017)
Andrade, T., Ribas, G., Oliveira, F.: A strategy based on convex relaxation for solving the oil refinery operations planning problem. Ind. Eng. Chem. Res. 55, 144–155 (2016)
Castillo Castillo, P., Castro, P.M., Mahalec, V.: Global optimization algorithm for large-scale refinery planning models with bilinear terms. Ind. Eng. Chem. Res. 56, 530–548 (2017)
Castro, P.M., Grossmann, I.E.: Global optimal scheduling of crude oil blending operations with RTN continuous-time and multiparametric disaggregation. Ind. Eng. Chem. Res. 53, 15127–15145 (2014)
Cerdá, J., Pautasso, P.C., Cafaro, D.C.: Efficient approach for scheduling crude oil operations in marine-access refineries. Ind. Eng. Chem. Res. 54, 8219–8238 (2015)
Zhao, Y., Wu, N., Li, Z., Qu, T.: A novel solution approach to a priority-slot-based continuous-time mixed integer nonlinear programming formulation for a crude-oil scheduling problem. Ind. Eng. Chem. Res. 55, 10955–10967 (2016)
Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Hydro energy systems management in Portugal: profit-based evaluation of a mixed-integer nonlinear approach. Energy 36, 500–507 (2011)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (2013)
Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)
Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. Program. 10, 147–175 (1976)
Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)
Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56, 917–937 (2013)
Bergamini, M.L., Aguirre, P., Grossmann, I.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29, 1914–1933 (2005)
Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under- and overestimators for global optimization of bilinear programs. AIChE J. 54, 991–1008 (2008)
Li, X., Chen, Y., Barton, P.I.: Nonconvex generalized benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problems. Ind. Eng. Chem. Res. 51, 7287–7299 (2012)
Castro, P.M.: Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng. 72, 300–311 (2015)
Kolodziej, S., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57, 1039–1063 (2013)
Castro, P.M.: Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems. J. Glob. Optim. 64, 765–784 (2016)
Faria, D.C., Bagajewicz, M.J.: A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems. AIChE J. 58, 2320–2335 (2012)
Castro, P.M.: Spatial branch-and-bound algorithm for MIQCPs featuring multiparametric disaggregation. Optim. Methods Softw. 32, 719–737 (2017)
Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using networks. Comput. Chem. Eng. 52, 249–261 (2013)
Castro, P.M., Grossmann, I.E.: Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems. J. Glob. Optim. 59, 277–306 (2014)
Nagarajan, H., Lu, M., Yamangil, E., Bent, R.: Tightening McCormick relaxations for nonlinear programs via dynamic multivariate partitioning. In: Rueher, M. (ed.) Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, September 5–9, 2016, Proceedings, pp. 369–387. Springer, Cham (2016)
Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124, 383–411 (2010)
Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130, 359–413 (2011)
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)
Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57, 3–50 (2013)
Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)
Gleixner, A.M., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound tightening. J. Glob. Optim. 67, 731–757 (2017)
Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discrete Methods 6, 466–486 (1985)
Atamturk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in solving integer programming problems. Eur. J. Oper. Res. 121, 40–55 (2000)
Acknowledgements
Support by Ontario Research Foundation, McMaster Advanced Control Consortium, and Fundação para a Ciência e Tecnologia (Projects IF/00781/2013 and UID/MAT/04561/2013), is gratefully appreciated.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Castillo Castillo, P.A., Castro, P.M. & Mahalec, V. Global optimization of MIQCPs with dynamic piecewise relaxations. J Glob Optim 71, 691–716 (2018). https://doi.org/10.1007/s10898-018-0612-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-018-0612-7