Abstract
We present two feasibility heuristics for binary mixed integer nonlinear programming. Called integrality gap minimization algorithm (IGMA)—versions 1 and 2, our heuristics are based on the solution of integrality gap minimization problems with a space partitioning scheme defined over the integer variables of the problem addressed. Computational results on a set of benchmark instances show that the proposed approaches present satisfactory results.




Similar content being viewed by others
References
Belotti, P.: Design of telecommunication networks with shared protection. Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=51 (2009). Accessed 14 Oct 2016
Belotti, P., Berthold, T.: Three ideas for a feasibility pump for nonconvex minlp. Optim. Lett. 11(1), 3–15 (2017)
Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general mixed-integer problems. Discrete Optim. 4(1), 63–76 (2007)
Berthold, T., Gleixner, A.M.: Undercover—a primal heuristic for minlp based on sub-mips generated by set covering. Technical Report ZIB-REPORT 09-04 (2009)
Berthold, T.: Heuristic algorithms in global MINLP solvers. Ph.D. thesis, Technische Universität Berlin (2014)
Berthold, T.: Rens. Math. Program. Comput. 6(1), 33–54 (2014)
Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Program. 119, 331–352 (2009). https://doi.org/10.1007/s10107-008-0212-2
Bonami, P., Gonçalves, J.: Heuristics for convex mixed integer nonlinear programs. Comput. Optim. Appl. (2008). https://doi.org/10.1007/s10589-010-9350-6
Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. Technical Report 1664, Computer Sciences Department, University of Wisconsin-Madison (2009)
Bonami, P., Lee, J., Leyffer, S., Wächter, A.: On branching rules for convex mixed-integer nonlinear optimization. J. Exp. Algorithmics 18, 2.6:2.1–2.6:2.31 (2013)
Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution networks: a practical minlp approach. Optim. Eng. 13, 219–246 (2012). https://doi.org/10.1007/s11081-011-9141-7
Christodoulou, M., Costoulakis, C.: Nonlinear mixed integer programming for aircraft collision avoidance in free flight. In: Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, 2004. MELECON 2004, vol. 1, pp. 327–330 (2004)
D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: A storm of feasibility pumps for nonconvex minlp. Math. Program. 136(2), 375–402 (2012)
D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: a practical overview. 4OR 9(4), 329–349 (2011)
Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve mip solutions. Math. Program. 102(1), 71–90 (2005)
Dash Optimization. Getting Started with Xpress. http://www.fico.com/xpress. Accessed 14 Oct 2016
Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986). https://doi.org/10.1007/BF02592064
Fampa, M., Lee, J., Melo, W.: On global optimization with indefinite quadratics. EURO J. Comput. Optim. (2016). https://doi.org/10.1007/s13675-016-0079-6
Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–47 (2003). https://doi.org/10.1007/s10107-003-0395-5
Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994). https://doi.org/10.1007/BF01581153
Fourer, R., Gay, D.M., Kernighan, B.: AMPL: a mathematical programming language. In: Wallace, S.W. (ed.) Algorithms and Model Formulations in Mathematical Programming. Nato Asi Series F, Computer And Systems Sciences, Vol. 51. Springer, New York, NY, pp. 50–151 (1989).
GAMS World. Minlp library 2. https://www.gamsworld.org/minlp/minlplib2/html/ (2014). Accessed 14 Oct 2016
Gentilini, I.: Minlp approach for the TSPN (traveling salesman problem with neighborhoods). Available from CyberInfrastructure for MINLP at: https://www.minlp.org/library/problem/index.php?i=124 (2011). Accessed 14 Oct 2016
Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10, 237–260 (1972). https://doi.org/10.1007/BF00934810
Gopalakrishnan, A., Biegler, L.: Minlp and MPCC formulations for the cascading tanks problem. Available from CyberInfrastructure for MINLP at: https://www.minlp.org/library/problem/index.php?i=140(2011). Accessed 14 Oct 2016
Guillen, G., Pozo, C.: Optimization of metabolic networks in biotechnology. Available from CyberInfrastructure for MINLP at: https://www.minlp.org/library/problem/index.php?i=81 (2010). Accessed 14 Oct 2016
Hemmecke, R., Köppe, M., Lee, J., Weismantel, R.: Nonlinear integer programming. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008, pp. 561–618. Springer, Berlin (2010). https://doi.org/10.1007/978-3-540-68279-0_15
Intel Corporation: Intel C++ Compiler 16.0 User and Reference Guide. https://software.intel.com/en-us/intel-cplusplus-compiler-16.0-user-and-reference-guide. Accessed 14 Oct 2016
Leyffer, S., Linderoth, J., Luedtke, J., Miller, A., Munson, T.: Applications and algorithms for mixed integer nonlinear programming. J. Phys. Conf. Ser. 180(1), 012014 (2009)
Liberti, L., Mladenović, N., Nannicini, G.: A recipe for finding good solutions to minlps. Math. Program. Comput. 3, 349–390 (2011). https://doi.org/10.1007/s12532-011-0031-y
Liu, P., Pistikopoulos, E.N., Li, Z.: Global multi-objective optimization of a nonconvex minlp problem and its application on polygeneration energy systems design. Available from CyberInfrastructure for MINLP at: https://www.minlp.org/library/problem/index.php?i=42 (2009). Accessed 14 Oct 2016
López, C.O., Beasley, J.E.: A note on solving minlp’s using formulation space search. Optim. Lett. 8(3), 1167–1182 (2014)
Melo, W., Fampa, M., Raupp, F.: Integrating nonlinear branch-and-bound and outer approximation for convex mixed integer nonlinear programming. J. Glob. Optim. 60(2), 373–389 (2014)
Mouret, S., Grossmann, I.: Crude-oil operations scheduling. Available from CyberInfrastructure for MINLP at: https://www.minlp.org/library/problem/index.php?i=117 (2010). Accessed 14 Oct 2016
Murray, W., Ng, K.-M.: An algorithm for nonlinear optimization problems with binary variables. Comput. Optim. Appl. 47, 257–288 (2010). https://doi.org/10.1007/s10589-008-9218-1
Nannicini, G., Belotti, P., Liberti, L.: A local branching heuristic for MINLPs. ArXiv e-prints (2008)
Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex minlp optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)
Raghavachari, M.: On connections between zero-one integer programming and concave programming under linear constraints. Oper. Res. 17(4), 680–684 (1969)
Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput. 6(4), 445–454 (1994)
Science Technology Facilities Council: HSL: A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/. Accessed 14 Oct 2016
Trespalacios, F., Grossmann, I.E.: Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chem. Ing. Tech. 86(7), 991–1012 (2014)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y
You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for large-scale supply chain design with stochastic inventory management. Indus. Eng. Chem. Res. 47(20), 7802–7817 (2008)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Melo, W., Fampa, M. & Raupp, F. Integrality gap minimization heuristics for binary mixed integer nonlinear programming. J Glob Optim 71, 593–612 (2018). https://doi.org/10.1007/s10898-018-0623-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-018-0623-4