Skip to main content
Log in

A nonconvex quadratic optimization approach to the maximum edge weight clique problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The maximum edge weight clique (MEWC) problem, defined on a simple edge-weighted graph, is to find a subset of vertices inducing a complete subgraph with the maximum total sum of edge weights. We propose a quadratic optimization formulation for the MEWC problem and study characteristics of this formulation in terms of local and global optimality. We establish the correspondence between local maxima of the proposed formulation and maximal cliques of the underlying graph, implying that the characteristic vector of a MEWC in the graph is a global optimizer of the continuous problem. In addition, we present an exact algorithm to solve the MEWC problem. The algorithm is a combinatorial branch-and-bound procedure that takes advantage of a new upper bound as well as an efficient construction heuristic based on the proposed quadratic formulation. Results of computational experiments on some benchmark instances are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abello, J., Butenko, S., Pardalos, P., Resende, M.: Finding independent sets in a graph using continuous multivariable polynomial formulations. J. Glob. Optim. 21, 111–137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akutsu, T., Hayashida, M., Tomita, E., Suzuki, J.: Protein threading with profiles and constraints. In: Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering, pp. 537–544 (2004 May)

  3. Alidaee, B., Glover, F., Kochenberger, G., Wang, H.: Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur. J. Oper. Res. 181(2), 592–597 (2007)

    Article  MATH  Google Scholar 

  4. Aringhieri, R., Cordone, R.: Comparing local search metaheuristics for the maximum diversity problem. J. Oper. Res. Soc. 62(2), 266–280 (2011)

    Article  Google Scholar 

  5. Balasundaram, B., Butenko, S.: On a polynomial fractional formulation for independence number of a graph. J. Glob. Optim. 35, 405–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomze, I.M.: Evolution towards the maximum clique. J. Glob. Optim. 10, 143–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bomze, I.M., Budinich, M., Pelillo, M., Rossi, C.: A new “annealed” heuristic for the maximum clique problem. In: Pardalos, P.M. (ed.) Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems, pp. 78–96. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  9. Brown, J.B., Bahadur, D.K.C., Tomita, E., Akutsu, T.: Multiple methods for protein side chain packing using maximum weight cliques. Genome Inform. 17, 3–12 (2006)

    Google Scholar 

  10. Bulò, S.R., Pelillo, M.: A generalization of the Motzkin–Straus theorem to hypergraphs. Optim. Lett. 3(2), 287–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Busygin, S.: A new trust region technique for the maximum weight clique problem. Discrete Appl. Math. 154, 2080–2096 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Busygin, S., Butenko, S., Pardalos, P.M.: A heuristic for the maximum independent set problem based on optimization of a quadratic over a sphere. J. Comb. Optim. 6, 287–297 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9, 375–382 (1990)

    Article  MATH  Google Scholar 

  14. Cavique, L.: A scalable algorithm for the market basket analysis. J. Retail. Consum. Serv. 14(6), 400–407 (2007)

    Article  Google Scholar 

  15. de Andrade, M.R.Q., de Andrade, P.M.F., Martins, S.L., Plastino, A.: Grasp with path-relinking for the maximum diversity problem. In: Nikoletseas, S.E. (ed.) Proceedings of the Experimental and Efficient Algorithms: 4th International Workshop, WEA 2005, Santorini Island, Greece, May 10–13, 2005, pp. 558–569. Springer, Berlin (2005)

  16. Dijkhuizen, G., Faigle, U.: A cutting-plane approach to the edge-weighted maximal clique problem. Eur. J. Oper. Res. 69(1), 121–130 (1993)

    Article  MATH  Google Scholar 

  17. Forsythe, G.E., Golub, G.H.: On the stationary values of a second-degree polynomial on the unit sphere. J. Soc. Ind. Appl. Math. 13(4), 1050–1068 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallego, M., Duarte, A., Laguna, Manuel, Martí, Rafael: Hybrid heuristics for the maximum diversity problem. Comput. Optim. Appl. 44(3), 411–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gibbons, L.E., Hearn, D.W., Pardalos, P.M.: A continuous based heuristic for the maximum clique problem. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: Second DIMACS Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 103–124. American Mathematical Society, Providence (1996)

    Chapter  Google Scholar 

  20. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V.: Continuous characterizations of the maximum clique problem. Math. Oper. Res. 22, 754–768 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gouveia, L., Martins, P.: Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. EURO J. Comput. Optim. 3(1), 1–30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harant, J.: A lower bound on the independence number of a graph. Discrete Math. 188, 239–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harant, J.: Some news about the independence number of a graph. Discuss. Mathe. Graph Theory 20, 71–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets of graphs. Comb. Probab. Comput. 8, 547–553 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hosseinian, S., Fontes, D.B.M.M., Butenko, S.: A quadratic approach to the maximum edge weight clique problem. In: Rocha, A.M.A.C., Costa, M.F.P., Fernandes, E.M.G.P. (eds.) XIII Global Optimization Workshop (GOW’16), pp. 125–128. University of Minho, Braga (2016)

    Google Scholar 

  26. Hosseinian, S., Fontes, D.B.M.M., Butenko, S., Buongiorno Nardelli, M., Fornari, M., Curtarolo, S.: The maximum edge weight clique problem: formulations and solution approaches. In: Butenko, S., Pardalos, P .M., Shylo, V. (eds.) Optimization Methods and Applications, pp. 217–237. Springer, Berlin (2017)

  27. Hunting, M., Faigle, U., Kern, W.: A Lagrangian relaxation approach to the edge-weighted clique problem. Eur. J. Oper. Res. 131(1), 119–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jabbar, M.A., Deekshatulu, B .L., Chandra, P.: Graph based approach for heart disease prediction. In: Das, Vinu V (ed.) Proceedings of the Third International Conference on Trends in Information, Telecommunication and Computing, pp. 465–474. Springer, New York (2013)

    Chapter  Google Scholar 

  29. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  30. Ma, T., Latecki, L.J.: Maximum weight cliques with mutex constraints for video object segmentation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–677 (2012 June)

  31. Macambira, E.M., de Souza, C.C.: The edge-weighted clique problem: valid inequalities, facets and polyhedral computations. Eur. J. Oper. Res. 123(2), 346–371 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Martí, R., Gallego, M., Duarte, A., Pardo, E.G.: Heuristics and metaheuristics for the maximum diversity problem. J. Heur. 19(4), 591–615 (2013)

    Article  Google Scholar 

  33. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J Math. 17, 533–540 (1965)

    Article  MATH  Google Scholar 

  34. Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120, 197–207 (2002)

    Article  MathSciNet  Google Scholar 

  35. Palubeckis, G.: Iterated tabu search for the maximum diversity problem. Applied Math. Comput. 189(1), 371–383 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Global Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pardalos, P.M., Phillips, A.T.: A global optimization approach for solving the maximum clique problem. Int. J. Comput. Math. 33, 209–216 (1990)

    Article  MATH  Google Scholar 

  38. Park, K., Lee, K., Park, S.: An extended formulation approach to the edge-weighted maximal clique problem. Eur. J. Oper. Res. 95(3), 671–682 (1996)

    Article  MATH  Google Scholar 

  39. Pavan, M., Pelillo, M.: Generalizing the motzkin-straus theorem to edge-weighted graphs, with applications to image segmentation. In: Rangarajan, Anand, Figueiredo, Mário, Zerubia, Josiane (eds.) Proceedings of the Energy Minimization Methods in Computer Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7–9, 2003, pp. 485–500. Springer, Berlin (2003)

  40. Pelillo, M., Jagota, A.: Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Netw. 2, 411–420 (1995)

    Google Scholar 

  41. Peng, Y., Peng, H., Tang, Q., Zhao, C.: An extension of the Motzkin–Straus theorem to non-uniform hypergraphs and its applications. Discrete Appl. Math. 200, 170–175 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pullan, W.: Approximating the maximum vertex/edge weighted clique using local search. J. Heur. 14(2), 117–134 (2008)

    Article  MATH  Google Scholar 

  43. Segundo, P.San, Nikolaev, A., Batsyn, M., Batsyn, M.: Infra-chromatic bound for exact maximum clique search. Comput. Oper. Res. 64, 293–303 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Silva, G.C., de Andrade, M.R.Q., Ochi, L.S., Martins, S.L., Plastino, A.: New heuristics for the maximum diversity problem. J. Heur. 13(4), 315–336 (2007)

    Article  Google Scholar 

  45. Sorensen, M.M.: New facets and a branch-and-cut algorithm for the weighted clique problem. Eur. J. Oper. Res. 154(1), 57–70 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Global Optim. 37(1), 95–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, Md. Saidur, Fujita, Satoshi (eds), Proceedings of the WALCOM: Algorithms and Computation: 4th International Workshop, WALCOM 2010, Dhaka, Bangladesh, February 10–12, 2010, pp. 191–203. Springer, Berlin (2010)

  48. Wang, Y., Hao, J.K., Glover, F., Lü, Z.: A tabu search based memetic algorithm for the maximum diversity problem. Eng. Appl. Artif. Intell. 27, 103–114 (2014)

    Article  Google Scholar 

  49. Wu, Q., Hao, J.-K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ye, Y.: A new complexity result on minimization of a quadratic function with a sphere constraint. In: Floudas, C., Pardalos, P. (eds.) Recent Advances in Global Optimization, pp. 19–31. Princeton University Press, Princeton (1992)

    Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous referees, whose feedback helped us to improve the paper. This work was carried out while the 2nd author was a visiting scholar at Texas A&M University, College Station, TX, USA and is partially supported by scholarship SFRH/BSAB/113662/2015. Partial support by DOD-ONR (N00014-13-1-0635) and NSF (CMMI-1538493) Grants is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Butenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinian, S., Fontes, D.B. & Butenko, S. A nonconvex quadratic optimization approach to the maximum edge weight clique problem. J Glob Optim 72, 219–240 (2018). https://doi.org/10.1007/s10898-018-0630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0630-5

Keywords

Navigation