Skip to main content

Globally solving a class of optimal power flow problems in radial networks by tree reduction

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We devise an algorithm for finding the global optimal solution of the so-called optimal power flow problem for a class of power networks with a tree topology, also called radial networks, for which an efficient and reliable algorithm was not previously known. The algorithm we present is called the tree reduction/expansion method, and is based on an equivalence between the input network and a single-node network. Finally, our numerical experiments demonstrate the reliability and robustness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://github.com/alexshtf/trem_opf_solver.

References

  1. Bienstock, D.: Progress on solving power flow problems. Optima 93, 1–7 (2003)

    Google Scholar 

  2. Bose, S., Gayme, D.F., Low, S., Chandy, K.M.: Optimal power flow over tree networks. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1342–1348 (2011)

  3. Cespedes, R.G.: New method for the analysis of distribution networks. IEEE Trans. Power Deliv. 5(1), 391–396 (1990)

    Article  MathSciNet  Google Scholar 

  4. Chakravorty, M., Das, D.: Voltage stability analysis of radial distribution networks. Int. J. Electr. Power Energy Syst. 23(2), 129–135 (2001)

    Article  Google Scholar 

  5. Chang, G.W., Chu, S.Y., Wang, H.L.: An improved backward/forward sweep load flow algorithm for radial distribution systems. IEEE Trans. Power Syst. 22(2), 882–884 (2007)

    Article  Google Scholar 

  6. Das, D., Kothari, D.P., Kalam, A.: Simple and efficient method for load flow solution of radial distribution networks. Int. J. Electr. Power Energy Syst. 17(5), 335–346 (1995)

    Article  Google Scholar 

  7. de Boor, Carl: A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences. Springer-Verlag, New York (2001)

    Google Scholar 

  8. Eminoglu, U., Hocaoglu, M.H.: Distribution systems forward/backward sweep-based power flow algorithms: a review and comparison study. Electr. Power Compon. Syst. 37(1), 91–110 (2008)

    Article  Google Scholar 

  9. Farivar, M., Clarke, C.R., Low, S.H., Chandy, K.M.: Inverter var control for distribution systems with renewables. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 457–462. (2011)

  10. Farivar, M., Low, S.H.: Branch flow model: relaxations and convexification—part i. IEEE Trans. Power Syst. 28(3), 2554–2564 (2013)

    Article  Google Scholar 

  11. Frank, Stephen, Steponavice, Ingrida, Rebennack, Steffen: Optimal power flow: a bibliographic survey i. Energy Syst. 3(3), 221–258 (2012)

    Article  Google Scholar 

  12. Gan, L., Li, N., Topcu, U., Low, S.H.: Exact convex relaxation of optimal power flow in radial networks. IEEE Trans. Autom. Control 60(1), 72–87 (2015)

    Article  MathSciNet  Google Scholar 

  13. Haque, M.H.: Efficient load flow method for distribution systems with radial or mesh configuration. IEE Proc. Gen. Transm. Distrib. 143(1), 33–38 (1996)

    Article  Google Scholar 

  14. Kocuk, B., Dey, S.S., Sun, X.A.: Inexactness of sdp relaxation and valid inequalities for optimal power flow. IEEE Trans. Power Syst. 31(1), 642–651 (2016)

    Article  Google Scholar 

  15. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  16. Low, S.H.: Convex relaxation of optimal power flow—part i: formulations and equivalence. IEEE Trans. Control Netw. Syst. 1(1), 15–27 (2014)

    Article  MathSciNet  Google Scholar 

  17. Low, S.H.: Convex relaxation of optimal power flow—part ii: exactness. IEEE Trans. Control Netw. Syst. 1(2), 177–189 (2014)

    Article  MathSciNet  Google Scholar 

  18. MathWorks. Cubic spline interpolation—matlab csapi. http://www.mathworks.com/help/curvefit/csapi.html. Accessed 10 April 2017

  19. IEEE Power and Energy Society. Distribution test feeders. https://ewh.ieee.org/soc/pes/dsacom/testfeeders/, 2000. Accessed 10 April 2017

  20. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Beck.

Additional information

The research of Amir Beck was partially supported by the Israel Science Foundation grant 1821/16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, A., Beck, Y., Levron, Y. et al. Globally solving a class of optimal power flow problems in radial networks by tree reduction. J Glob Optim 72, 373–402 (2018). https://doi.org/10.1007/s10898-018-0652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0652-z