Skip to main content
Log in

Spectral projected gradient method for stochastic optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the Spectral Projected Gradient method for solving constrained optimization problems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of different Sample Average Approximation functions with different sample sizes. The sample size update is based on two error estimates—SAA error and approximate solution error. The Spectral Projected Gradient method combined with a nonmonotone line search is used. The almost sure convergence results are achieved without imposing explicit sample growth condition. Preliminary numerical results show the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andradottir, S.: A scaled stochastic approximation algorithm. Manage. Sci. 42(4), 475–498 (1996)

    Article  MATH  Google Scholar 

  2. Bastin, F.: Trust-Region Algorithms for Nonlinear Stochastic Programming and Mixed Logit Models, Ph.D. thesis, University of Namur, Belgium (2004)

  3. Bastin, F., Cirillo, C., Toint, P.L.: An adaptive Monte Carlo algorithm for computing mixed logit estimators. CMS 3(1), 55–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bastin, F., Cirillo, C., Toint, P.L.: Convergence theory for nonconvex stochastic programming with an application to mixed logit. Math. Program. Ser. B 108, 207–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayraksan, G., Morton, D.P.: A sequential sampling procedure for stochastic programming. Oper. Res. Int. J. 59, 898–913 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Homem-de-Mello, T., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19, 56–85 (2014)

    MathSciNet  Google Scholar 

  7. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone Spectral Projected Gradients on Convex Sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral projected gradient methods: review and perspectives. J. Stat. Softw. 60(3), 1–21 (2014)

    Article  Google Scholar 

  9. Byrd, R., Chin, G., Neveitt, W., Nocedal, J.: On the use of stochastic Hessian information in optimization methods for machine learning. SIAM J. Optim. 21(3), 977–995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrd, R., Chin, G., Neveitt, W., Nocedal, J.: Sample size selection in optimization methods for machine learning. Math. Program. 134(1), 127–155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-Newton method for large scale optimization, arxiv.org/abs/1401.7020)

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedlander, M.P., Schmidt, M.: Hybrid deterministic-stochastic methods for data fitting. SIAM J. Sci. Comput. 34(3), 1380–1405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, M.C.: Gradient estimation, In: Henderson, S.G., Nelson, B.L. (eds.), Handbook in OR & MS 13, pp. 575–616. Elsevier B.V. (2006)

  15. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59, 779–805 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Homem-de-Mello, T.: Variable-sample methods for stochastic optimization. ACM Trans. Model. Comput. Simul. 13(2), 108–133 (2003)

    Article  MATH  Google Scholar 

  18. Kao, C., Song, W.T., Chen, S.: A modified quasi-Newton method for optimization in simulation. Int. Trans. Oper. Res. 4(3), 223–233 (1997)

    Article  MATH  Google Scholar 

  19. Krejić, N., Lužanin, Z., Ovcin, Z., Stojkovska, I.: Descent direction method with line search for unconstrained optimization in noisy environment. Optim. Methods Softw. 30(6), 1164–1184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krejić, N., Krklec, N.: Line search methods with variable sample size for unconstrained optimization. J. Comput. Appl. Math. 245, 213–231 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krejić, N., Jerinkić, N.Krklec: Nonmonotone line search methods with variable sample size. Numer. Algorithms 68, 711–739 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krejić, N., Martínez, J.M.: Inexact restoration approach for minimization with inexact evaluation of the objective function. Math. Comput. 85(300), 1775–1791 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Law, A.M.: Simulation Modeling and Analysis. McGraw-Hill Education, New York (2014)

    Google Scholar 

  24. Mokhtary, A., Ribeiro, A.: Global convergence of online limited memory BFGS. J. Mach. Learn. Res. 16, 3151–3181 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Ali, M.Montaz, Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continous global optimization test problems. J. Global Optim. 31(4), 635–672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13, 181–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pasupathy, R.: On choosing parameters in retrospective-approximation algorithms for stochastic root finding and simulation optimization. Oper. Res. 58(4), 889–901 (2010)

    Article  MATH  Google Scholar 

  28. Polak, E., Royset, J.O.: Eficient sample sizes in stochastic nonlinear programing. J. Comput. Appl. Math. 217(2), 301–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Royset, J.O.: Optimality functions in stochastic programming. Math. Program. 135(1–2), 293–321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on stochastic programming: modeling and theory. MPS/SIAM Ser. Optim. 9, 1–413 (2009)

    MATH  Google Scholar 

  31. Shapiro, A., Wardi, Y.: Convergence analysis of gradient descent stochastic algorithms. J. Optim. Theory Appl. 91(2), 439–454 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spall, J.C.: Introduction to Stochastic Search and Optimization. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  33. Wardi, Y.: Stochastic algorithms with Armijo stepsizes for minimization of functions. J. Optim. Theory Appl. 64, 399–417 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 4, 1043–1056 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan, D., Mukai, H.: Optimization algorithm with probabilistic estimation. J. Optim. Theory Appl. 79(2), 345–371 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the associate editor and two anonymous referees whose constructive remarks helped us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Krklec Jerinkić.

Additional information

Research supported by Serbian Ministry of Education, Science and Technological Development, Grant No. 174030.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krejić, N., Krklec Jerinkić, N. Spectral projected gradient method for stochastic optimization. J Glob Optim 73, 59–81 (2019). https://doi.org/10.1007/s10898-018-0682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0682-6

Keywords

Navigation