Skip to main content
Log in

Conditional optimization of a noisy function using a kriging metamodel

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The efficient global optimization method is popular for the global optimization of computer-intensive black-box functions. Extensions exist, either for the optimization of noisy functions, or for the conditional optimization of deterministic functions, i.e. the search for the values of a subset of parameters that optimize the function conditionally to the values taken by another subset, which are fixed. A metaphor for conditional optimization is the search for a crest line. No method has yet been developed for the conditional optimization of noisy functions: this is what we propose in this article. Testing this new method on test functions showed that, in the case of a high level of noise on the function, the PEQI criterion that we propose is better than the PEI criterion usually implemented in such a situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Branin, F.H., Hoo, S.K.: A method for finding multiple extrema of a function of n variables. In: Lootsma, F.A. (ed.) Numerical methods of Nonlinear Optimization, pp. 231–237. Academic Press, London (1972)

    Google Scholar 

  2. Brun, F., Wallach, D., Makowski, D., Jones, J.W.: Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  3. Calvin, J.M., Zalinski, A.: One-dimensional global optimization for observations with noise. Comput. Math. Appl. 50, 157–169 (2005)

    Article  MathSciNet  Google Scholar 

  4. Carnell, R.: lhs: Latin Hypercube Samples. http://CRAN.R-project.org/package=lhs, r package version 0.5, last access 15 (2011)

  5. Cox, D.D., John, S.: SDO: a statistical method for global optimization. In: Alexandrov, N., Hussaini, M.Y. (eds.) Multidisciplinary Design Optimization: State of the Art, pp. 315–329. SIAM, Philadelphia (1997)

  6. Cressie, N.: Statistics for Spatial Data, Revised edn. Wiley, New York (1993)

    MATH  Google Scholar 

  7. Donald, C.M.: The breeding of crop ideotypes. Euphytica 17(3), 385–403 (1968)

    Article  Google Scholar 

  8. Ginsbourger, D., Baccou, J., Chevalier, C., Perales, F., Garland, N., Monerie, Y.: Bayesian adaptive reconstruction of profile optima and optimizers. SIAM/ASA J. Uncertain. Quantif. 2(1), 490–510 (2014). https://doi.org/10.1137/130949555

    Article  MathSciNet  MATH  Google Scholar 

  9. Ginsbourger, D., Picheny, V., Roustant, O., Richet, Y.: A new look at kriging for the approximation of noisy simulators with tunable fidelity. 8th annual conference of ENBIS (2008)

  10. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forrester, A.I.J., Keane, A.J., Bressloff, N.W.: Design and analysis of “Noisy” computer experiments. AIAA J. 44(10), 2331–2339 (2006). https://doi.org/10.2514/1.20068

    Article  Google Scholar 

  12. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  13. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998). https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  MATH  Google Scholar 

  14. Jones, P.G., Thornton, P.K.: Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agric. Syst. 114, 1–5 (2013)

    Article  Google Scholar 

  15. Krige, D.G.: A statistical approach to some mine valuation and allied problems on the Witwatersrand: By DG Krige. Ph.D. thesis, University of the Witwatersrand (1951)

  16. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97 (1964). https://doi.org/10.1115/1.3653121

    Article  Google Scholar 

  17. Matheron, G.: Le krigeage universel. Les Cahiers du Centre de morphologie mathématique de Fontainebleau, vol. 1. École nationale supérieure des mines de Paris, Paris (1969)

  18. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979). https://doi.org/10.1080/00401706.1979.10489755

    MathSciNet  MATH  Google Scholar 

  19. Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia (1992). https://doi.org/10.1137/1.9781611970081

    Book  MATH  Google Scholar 

  20. Picheny, V., Ginsbourger, D.: Noisy kriging-based optimization methods: a unified implementation within the DiceOptim package. Comput. Stat. Data Anal. 71, 1035–1053 (2014). https://doi.org/10.1016/j.csda.2013.03.018

    Article  MathSciNet  MATH  Google Scholar 

  21. Picheny, V., Ginsbourger, D., Richet, Y., Caplin, G.: Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics 55(1), 2–13 (2013). https://doi.org/10.1080/00401706.2012.707580

    Article  MathSciNet  Google Scholar 

  22. Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of kriging-based infill criteria for noisy optimization. Struct. Multidiscip. Optim. 48(3), 607–626 (2013). https://doi.org/10.1007/s00158-013-0919-4

    Article  Google Scholar 

  23. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960). https://doi.org/10.1093/comjnl/3.3.175

    Article  MathSciNet  Google Scholar 

  24. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization. J. Stat. Softw. 51(1), 54 (2012)

    Article  Google Scholar 

  25. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. (1989)

  26. Scott, W., Frazier, P., Powell, W.: The correlated knowledge gradient for simulation optimization of continuous parameters using gaussian process regression. SIAM J. Optim. 21(3), 996–1026 (2011). https://doi.org/10.1137/100801275

    Article  MathSciNet  MATH  Google Scholar 

  27. Vazquez, E., Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Plan. Inference 140(11), 3088–3095 (2010). https://doi.org/10.1016/j.jspi.2010.04.018

    Article  MathSciNet  MATH  Google Scholar 

  28. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the West Africa Agricultural Productivity Program (WAAPP) that funded this research as part of a Ph.D. thesis grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diariétou Sambakhé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambakhé, D., Rouan, L., Bacro, JN. et al. Conditional optimization of a noisy function using a kriging metamodel. J Glob Optim 73, 615–636 (2019). https://doi.org/10.1007/s10898-018-0716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0716-0

Keywords

Navigation