Abstract
In this paper, we show how a special class of inverse optimal control problems of elliptic partial differential equations can be solved globally. Using the optimal value function of the underlying parametric optimal control problem, we transfer the overall hierarchical optimization problem into a nonconvex single-level one. Unfortunately, standard regularity conditions like Robinson’s CQ are violated at all the feasible points of this surrogate problem. It is, however, shown that locally optimal solutions of the problem solve a Clarke-stationarity-type system. Moreover, we relax the feasible set of the surrogate problem iteratively by approximating the lower level optimal value function from above by piecewise affine functions. This allows us to compute globally optimal solutions of the original inverse optimal control problem. The global convergence of the resulting algorithm is shown theoretically and illustrated by means of a numerical example.




Similar content being viewed by others
References
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier Science, Oxford (2003)
Albrecht, S., Leibold, M., Ulbrich, M.: A bilevel optimization approach to obtain optimal cost functions for human arm movements. Numer. Algebra Control Optim. 2(1), 105–127 (2012). https://doi.org/10.3934/naco.2012.2.105
Albrecht, S., Ulbrich, M.: Mathematical programs with complementarity constraints in the context of inverse optimal control for locomotion. Optim. Methods Softw. 32(4), 670–698 (2017). https://doi.org/10.1080/10556788.2016.1225212
Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic, Dordrecht (1998)
Benita, F., Mehlitz, P.: Bilevel optimal control with final-state-dependent finite-dimensional lower level. SIAM J. Optim. 26(1), 718–752 (2016). https://doi.org/10.1137/15M1015984
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)
Dempe, S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002)
Dempe, S., Dutta, J.: Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program. 131(1), 37–48 (2012). https://doi.org/10.1007/s10107-010-0342-1
Dempe, S., Franke, S.: On the solution of convex bilevel optimization problems. Comput. Optim. Appl. 63(3), 685–703 (2016). https://doi.org/10.1007/s10589-015-9795-8
Dempe, S., Kalashnikov, V., Pérez-Valdéz, G., Kalashnykova, N.: Bilevel Programming Problems—Theory, Algorithms and Applications to Energy Networks. Springer, Berlin (2015)
Fiacco, A.V., Kyparisis, J.: Convexity and concavity properties of the optimal value function in parametric nonlinear programming. J. Optim. Theory Appl. 48(1), 95–126 (1986). https://doi.org/10.1007/BF00938592
Fisch, F., Lenz, J., Holzapfel, F., Sachs, G.: On the solution of bilevel optimal control problems to increase the fairness in air races. J. Guid. Control Dyn. 35(4), 1292–1298 (2012). https://doi.org/10.2514/1.54407
Flegel, M.L., Kanzow, C.: On M-stationary points for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 310(1), 286–302 (2005). https://doi.org/10.1016/j.jmaa.2005.02.011
Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977). https://doi.org/10.2969/jmsj/02940615
Harder, F., Wachsmuth, G.: Comparison of optimality systems for the optimal control of the obstacle problem. GAMM Mitt. 40(4), 312–338 (2018). https://doi.org/10.1002/gamm.201740004
Harder, F., Wachsmuth, G.: Optimality conditions for a class of inverse optimal control problems with partial differential equations. Optimization (2018). https://doi.org/10.1080/02331934.2018.1495205
Hatz, K.: Efficient Numerical Methods for Hierarchical Dynamic Optimization with Application to Cerebral Palsy Gait Modeling. Ph.D. thesis, University of Heidelberg, Germany (2014)
Hatz, K., Schlöder, J.P., Bock, H.G.: Estimating parameters in optimal control problems. SIAM J. Sci. Comput. 34(3), A1707–A1728 (2012). https://doi.org/10.1137/110823390
Hinze, M., Pinnau, R., Ulbich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Berlin (2009)
Holler, G., Kunisch, K., Barnard, R.C.: A bilevel approach for parameter learning in inverse problems. Inverse Probl. 34(11), 1–28 (2018). https://doi.org/10.1088/1361-6420/aade77
Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999). https://doi.org/10.1023/A:1021765131316
Kalashnikov, V., Benita, F., Mehlitz, P.: The natural gas cash-out problem: a bilevel optimal control approach. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/286083
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
Knauer, M., Büskens, C.: Hybrid Solution Methods for Bilevel Optimal Control Problems with Time Dependent Coupling. In: M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (eds.) Recent Advances in Optimization and its Applications in Engineering: The 14th Belgian-French-German Conference on Optimization, pp. 237–246. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12598-0_20
Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, Hoboken (2012)
Mehlitz, P.: Necessary optimality conditions for a special class of bilevel programming problems with unique lower level solution. Optimization 66(10), 1533–1562 (2017). https://doi.org/10.1080/02331934.2017.1349123
Mehlitz, P., Wachsmuth, G.: Weak and strong stationarity in generalized bilevel programming and bilevel optimal control. Optimization 65(5), 907–935 (2016). https://doi.org/10.1080/02331934.2015.1122007
Mombaur, K., Truong, A., Laumond, J.P.: From human to humanoid locomotion—an inverse optimal control approach. Auton. Robots 28(3), 369–383 (2010). https://doi.org/10.1007/s10514-009-9170-7
Nožička, F., Guddat, J., Hollatz, H., Bank, B.: Theorie der Linearen Parametrischen Optimierung. Akademie, Berlin (1974)
Outrata, J.V.: On the numerical solution of a class of Stackelberg problems. Z. für Oper. Res. 34(4), 255–277 (1990). https://doi.org/10.1007/BF01416737
Robinson, S.M.: Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(4), 497–513 (1976). https://doi.org/10.1137/0713043
Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Kluwer Academic, Dordrecht (1997)
Tröltzsch, F.: Optimal Control of Partial Differential Equations. Vieweg, Wiesbaden (2009)
Troutman, J.L.: Variational Calculus and Optimal Control. Springer, New York (1996)
Ye, J.J.: Necessary conditions for bilevel dynamic optimization problems. SIAM J. Control Optim. 33(4), 1208–1223 (1995). https://doi.org/10.1137/S0363012993249717
Ye, J.J.: Optimal strategies for bilevel dynamic problems. SIAM J. Control Optim. 35(2), 512–531 (1997). https://doi.org/10.1137/S0363012993256150
Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33(1), 9–27 (1995). https://doi.org/10.1080/02331939508844060
Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979). https://doi.org/10.1007/BF01442543
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by the DFG Grant Analysis and Solution Methods for Bilevel Optimal Control Problems (Grant Nos. DE 650/10-1 and WA3636/4-1) within the Priority Program SPP 1962 (Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization).
Rights and permissions
About this article
Cite this article
Dempe, S., Harder, F., Mehlitz, P. et al. Solving inverse optimal control problems via value functions to global optimality. J Glob Optim 74, 297–325 (2019). https://doi.org/10.1007/s10898-019-00758-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-019-00758-1
Keywords
- Bilevel optimal control
- Global optimization
- Inverse optimal control
- Optimality conditions
- Solution algorithm