Skip to main content
Log in

An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge

  • S.I.: MOA 2018
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Multi-source Weber problem (MSWP) is a classical nonconvex and NP-hard model in facility location. A well-known method for solving MSWP is the location–allocation algorithm which consists of a location phase to locate new facilities and an allocation phase to allocate customers at each iteration. This paper considers the more general and practical case of MSWP called the constrained multi-source Weber problem (CMSWP), i.e., locating multiple facilities with the consideration of the gauge for measuring distances and locational constraints on new facilities. According to the favorable structure of the involved location subproblems after reformulation, an alternating direction method of multipliers (ADMM) type method is contributed to solving these subproblems under different distance measures in a uniform framework. Then a new ADMM-based location–allocation algorithm is presented for CMSWP and its local convergence is theoretically proved. Some preliminary numerical results are reported to verify the effectiveness of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    MATH  Google Scholar 

  3. Brimberg, J., Hansen, P., Mladenovic, N., Taillard, E.D.: Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. Oper. Res. 48(3), 444–460 (2000)

    Google Scholar 

  4. Brimberg, J., Love, R.F.: Global convergence of a generalized iterate procedure for the minisum location problem with \(l_p\) distances. Oper. Res. 41(6), 1153–1163 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Carrizosa, E., Conde, E., Oz, M.M., Puerto, J.: Simpson points in planar problems with locational constraints—the polyhedral gauge case. Math. Oper. Res. 22, 297–300 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Chandrasekaran, R., Tamir, A.: Open questions concerning Weiszfeld’s algorithm for the Fermat–Weber location problem. Math. Program. 44, 293–295 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Chen, C.H., He, B.S., Ye, Y.Y., Yuan, X.M.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155, 57–79 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Cooper, L.: Heuristic methods for location–allocation problems. SIAM Rev. 6, 37–53 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Cooper, L.: Solutions of generalized location equilibrium models. J. Reg. Sci. 7, 1–18 (1967)

    Google Scholar 

  12. Dai, Y.H., Han, D.R., Yuan, X.M., Zhang, W.X.: A sequential updating scheme of the Lagrange multiplier for separable convex programming. Math. Comput. 86, 315–343 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in \(2\) and \(3\) space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    MathSciNet  MATH  Google Scholar 

  15. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, New York (1995)

    Google Scholar 

  16. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)

    MATH  Google Scholar 

  18. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    MATH  Google Scholar 

  19. Glowinski, R., Marrocco, A.: Approximation par \(\acute{e}\)l\(\acute{e}\)ments finis d’ordre un et r\(\acute{e}\)solution par p\(\acute{e}\)nalisation-dualit\(\acute{e}\) d’une classe de probl\(\grave{e}\)mes non lin\(\acute{e}\)aires. RAIRO R2, 41–76 (1975)

    Google Scholar 

  20. Guo, K., Han, D.R., Yuan, X.M.: Convergence analysis of Douglas–Rachford splitting method for “strongly + weakly” convex programming. SIAM J. Numer. Anal. 55, 1549–1577 (2017)

    MathSciNet  MATH  Google Scholar 

  21. He, B.S., Tao, M., Yuan, X.M.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)

    MathSciNet  MATH  Google Scholar 

  22. He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23(3–5), 151–161 (1998)

    MathSciNet  MATH  Google Scholar 

  23. He, B.S., Yang, H., Wang, S.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    MathSciNet  MATH  Google Scholar 

  25. Iyigun, C., Israel, A.: A generalized Weiszfeld method for the multi-facility location problem. Oper. Res. Lett. 38, 207–214 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Jiang, J.L., Yuan, X.M.: A heuristic algorithm for constrained multi-source Weber problem—the variational inequality approach. Eur. J. Oper. Res. 187, 357–370 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Katz, I.N., Vogl, S.R.: A Weiszfeld algorithm for the solution of an asymmetric extension of the generalized Fermat location problem. Comput. Math. Appl. 59, 399–410 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Kuhn, H.W.: A note on Fermat’s problem. Math. Program. 4, 98–107 (1973)

    MathSciNet  MATH  Google Scholar 

  29. Levin, Y., Ben-Israel, A.: A heuristic method for large-scale multi-facility location problems. Comput. Oper. Res. 31, 257–272 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Liu, Y.F., Liu, X., Ma, S.Q.: On the nonergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming. Math. Oper. Res. 44(2), 632–650 (2019)

    MathSciNet  Google Scholar 

  32. Love, R.F., Morris, J.G.: Mathematical models of road travel distances. Manag. Sci. 25, 130–139 (1979)

    MATH  Google Scholar 

  33. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13, 182–196 (1984)

    MathSciNet  MATH  Google Scholar 

  34. Michelot, C., Lefebvre, O.: A primal–dual algorithm for the Fermat–Weber problem involving mixed gausess. Math. Program. 39, 319–335 (1987)

    MATH  Google Scholar 

  35. Minkowski, H.: Theorie der konvexen Körper, Gesammelte Abhandlungen. Teubner, Berlin (1911)

    Google Scholar 

  36. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Spriger, Berlin (2006)

    MATH  Google Scholar 

  37. Ostresh, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26, 597–609 (1978)

    MathSciNet  MATH  Google Scholar 

  38. Peng, Y.G., Ganesh, A., Wright, J., Xu, W.L., Ma, Y.: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2233–2246 (2012)

    Google Scholar 

  39. Plastria, F.: Asymmetric distances, semidirected networks and majority in Fermat–Weber problems. Ann. Oper. Res. 167, 121–155 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Powell, M.J.D.: A method for nonlinear constrained total-variation problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  41. Sun, D.F., Toh, K.C., Yang, L.Q.: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25, 882–915 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Tao, M., Yuan, X.M.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Vardi, Y., Zhang, C.H.: A modified Weiszfeld algorithm for the Fermat–Weber location problem. Math. Program. 90, 559–566 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Ward, J.E., Wendell, R.E.: Using block norms for location modelling. Oper. Res. 33, 1074–1090 (1985)

    MathSciNet  MATH  Google Scholar 

  45. Weiszfeld, E.: Sur le point pour lequel la somme des distances de \(n\) points donnés est minimum. Tohoku Math. J. 43, 355–386 (1937)

    MATH  Google Scholar 

  46. Witzgall, C.: Optimal location of a central facility, mathematical models and concepts. Report 8388, National Bureau of Standards, Washington DC, USA (1964)

  47. Yao, Z.S., Lee, L.H., Jaruphongsa, W., Tan, V., Hui, C.F.: Multi-source facility location–allocation and inventory problem. Eur. J. Oper. Res. 207, 750–762 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Yang, J.F., Sun, D.F., Toh, K.C.: A proximal point algorithm for log-determinant optimization with group lasso regularization. SIAM J. Optim. 23, 857–893 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by National Natural Science Foundation of China No. 11571169. The second author was supported by National Natural Science Foundation of China No. 71772094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhang, S., Lv, Y. et al. An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge. J Glob Optim 76, 793–818 (2020). https://doi.org/10.1007/s10898-019-00796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00796-9

Keywords

Navigation