Skip to main content
Log in

Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study the strong duality for an optimization problem to minimize a homogeneous quadratic function subject to two homogeneous quadratic constraints over the unit sphere, called Problem (P) in this paper. When a feasible (P) fails to have a Slater point, we show that (P) always adopts the strong duality. When (P) has a Slater point, we propose a set of conditions, called “Property J”, on an SDP relaxation of (P) and its conical dual. We show that (P) has the strong duality if and only if there exists at least one optimal solution to the SDP relaxation of (P) which fails Property J. Our techniques are based on various extensions of S-lemma as well as the matrix rank-one decomposition procedure introduced by Ai and Zhang. Many nontrivial examples are constructed to help understand the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai, W., Zhang, S.Z.: Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19(4), 1735–1756 (2009)

    Article  MathSciNet  Google Scholar 

  2. Andreani, R., Martinez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifications and sequential optimality conditions for constrained optimization. Math. Oper. Res. 43(3), 693–717 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bazarra, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming Theory and Algorithms. Wiley, New York (1993)

    Google Scholar 

  4. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)

    Article  MathSciNet  Google Scholar 

  5. Brickman, L.: On the field of values of a matrix. Proc. Am. Math. Soc. 12, 61–66 (1961)

    Article  MathSciNet  Google Scholar 

  6. Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust region algorithm for nonlinear equality constrained optimization. In: Boggs, R.T., Byrd, R.H., Schnabel, R.B. (eds.) Numerical Optimization, pp. 71–82. SIAM, Philadelphia (1984)

    Google Scholar 

  7. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  8. De Angelis, P.L., Toraldo, G.: Quadratic programming with bound constraints. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 3161–3166. Springer, New York (2009)

    Chapter  Google Scholar 

  9. Fallahi, S., Salahi, M.: On the indefinite quadratic fractional optimization with two quadratic constraints. J. Optim. Theory Appl. 162, 249–256 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ferreira, O.P., Nemeth, S.Z., Xiao, L.: On the spherical quasi-convexity of quadratic functions. Linear Algebra Its Appl. 562, 205–222 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ferreira, O.P., Nemeth, S.Z., Xiao, L.: On the spherical quasi-convexity of quadratic functions. Linear Algebra Appl. 562, 205–222 (2019)

    Article  MathSciNet  Google Scholar 

  12. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9(2), 504–525 (1999)

    Article  MathSciNet  Google Scholar 

  13. Hao, P.H.: Quadratically Constrained quadratic programming: some applications and a method for solution. Z. Oper. Res. 26, 105–119 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Hsia, Y., Lin, G.X., Sheu, R.L.: A revisit to quadratic programming with one inequality quadratic constraint via matrix pencil. Pac. J. Optim. 10(3), 461–481 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147(1–2), 171–206 (2014)

    Article  MathSciNet  Google Scholar 

  16. Locatelli, M.: Some results for quadratic problems with one or two quadratic constraints. Oper. Res. Lett. 43(2), 126–131 (2015)

    Article  MathSciNet  Google Scholar 

  17. Moré, J.J.: Generalization of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  18. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1983)

    Article  MathSciNet  Google Scholar 

  19. Nguyen, V.B., Sheu, R.L., Xia, Y.: Maximizing the sum of a generalized Rayleigh quotient and another Rayleigh quotient on the unit sphere via semidefinite programming. J. Glob. Optim. 64, 399–416 (2016)

    Article  MathSciNet  Google Scholar 

  20. Pardalos, P.M., Resende, M. (eds.): Handbook of Applied Optimization. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  21. Pitsoulis, L.: Quadratic programming with bound constraints. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 3170–3171. Springer, New York (2009)

    Chapter  Google Scholar 

  22. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)

    Article  MathSciNet  Google Scholar 

  23. Polyak, B.T.: Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory Appl. 99, 553–583 (1998)

    Article  MathSciNet  Google Scholar 

  24. Pong, T.K., Wolkowicz, H.: The generalized trust region subproblem. Comput. Optim. Appl. 58, 273–322 (2014)

    Article  MathSciNet  Google Scholar 

  25. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Program. 77(2, Ser. B), 273–299 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Sakaue, S., Nakatsukasa, Y., Takeda, A., Iwata, S.: Solving generalized CDT problems via two-parameter eigenvalues. SIAM J. Optim. 26(3), 1669–1694 (2016)

    Article  MathSciNet  Google Scholar 

  27. Solodov, M.V.: On the sequential quadratically constrained quadratic programming methods. Math. Oper. Res. 29(1), 64–79 (2004)

    Article  MathSciNet  Google Scholar 

  28. Sturm, J.F., Zhang, S.Z.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  MathSciNet  Google Scholar 

  29. Vanderberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1995)

    Article  MathSciNet  Google Scholar 

  30. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook on Semidefinite Programming: Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  31. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestnik Leningr. Univ. 4, 73–93 (1977)

    Google Scholar 

  32. Ye, Y.: A new complexity result on minimization of a quadratic function with a sphere constraint. In: Floudas, C., Pardalos, P. (eds.) Recent Advances in Global Optimization. Princeton University Press, Princeton (1992)

    Google Scholar 

  33. Yuan, Y.: Recent advances in trust region algorithms. Math. Program. 151(1), 249–281 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Bong Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, VB., Nguyen, T.N. & Sheu, RL. Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere. J Glob Optim 76, 121–135 (2020). https://doi.org/10.1007/s10898-019-00835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00835-5

Keywords

Mathematics Subject Classification

Navigation