Skip to main content
Log in

Order cancellation law in the family of bounded convex sets

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we prove necessary and sufficient criteria for a cancellation of a bounded convex set in the inclusion of Minkowski sums of sets. We also prove an order cancellation law in semigroups of not closed, bounded and convex sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbasov, M.E.: Generalized exhausters: existence, construction, optimality conditions. J. Ind. Manag. Optim. 11(1), 217–230 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Basaeva, E.K., Kusraev, A.G., Kutateladze, S.S.: Quasidifferentials in Kantorovich spaces. J. Optim. Theory Appl. 171, 365–383 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cristescu, R.: Topological Vector Spaces. Noordhof International Publishing, Bucureşti–Leyden (1977)

    MATH  Google Scholar 

  4. Dempe, S., Pallaschke, D.: Quasidifferentiability of optimal solutions in parametric nonlinear optimization. Optimization 40, 1–24 (1997)

    Article  MathSciNet  Google Scholar 

  5. Demyanov, V.F., Roshchina, V.: Exhausters, optimality conditions and related problems. J. Glob. Optim. 40, 71–85 (2008)

    Article  MathSciNet  Google Scholar 

  6. Demyanov, V.F., Rubinov, A.M.: Elements of quasidifferential calculus. In: Demyanov, V.F. (ed.) Nonsmooth Problems of Optimization Theory and Control, pp. 5–127. Leningrad University Press, Leningrad (1982)

    Google Scholar 

  7. Demyanov, V.F., Rubinov, A.M.: Quasidifferential Calculus. Optimization Software Inc., Publications Division, New York (1986)

    Book  Google Scholar 

  8. Demyanov, V.F., Rubinov, A.M.: Quasidifferentiability and Related Topics. Nonconvex Optimization and its Applications. Kluwer, Dortrecht–Boston–London (2001)

    Google Scholar 

  9. Ewald, G., Shephard, G.C.: Normed vector spaces consisting of classes of convex sets. Math. Z. 91(1), 1–19 (1966)

    Article  MathSciNet  Google Scholar 

  10. Gaudioso, M., Gorgone, E., Pallaschke, D.: Separation of convex sets by Clarke subdifferential. Optimization 59(8), 1199–1210 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gorokhovik, V.V.: On the quasidifferentiability of real functions and the conditions of local extrema. Sib. Math. J. 25, 62–70 (1984)

    MathSciNet  Google Scholar 

  12. Grzybowski, J., Küçük, M., Küçük, Y., Urbański, R.: Minkowski–Rådström–Hörmander cone. Pacific J. Optim. 10, 649–666 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Grzybowski, J., Küçük, M., Küçük, Y., Urbański, R.: On minimal representations by a family of sublinear functions. J. Glob. Optim. 61(2), 279–289 (2015)

    Article  MathSciNet  Google Scholar 

  14. Grzybowski, J., Pallaschke, D., Urbański, R.: Data pre-classification and the separation law for closed bounded convex sets. J. Glob. Optim. 46, 589–601 (2010)

    Article  Google Scholar 

  15. Grzybowski, J., Pallaschke, D., Urbański, R.: Reduction of finite exhausters. Optim. Methods Softw. 20(2–3), 219–229 (2005)

    Article  MathSciNet  Google Scholar 

  16. Hörmander, L.: Sur la fonction d’ appui des ensembles convexes dans un espace localement convexe. Arkiv Mat. 3, 181–186 (1954)

    Article  MathSciNet  Google Scholar 

  17. Leśniewski, A., Rzeżuchowski, T.: The Demyanov metric for convex, bounded sets and existence of Lipschitzian selectors. J. Convex Anal. 18(3), 737–747 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Pallaschke, D., Urbański, R.: Pairs of Compact Convex Sets. Fractional Arithmetic with Convex Sets. Mathematics and its Applications, vol. 548. Kluwer, Dordrecht–Boston–London (2002)

    Book  Google Scholar 

  19. Rådström, H.: An embedding theorem for spaces of convex sets. Proc. Am. Math. Soc. 3, 165–169 (1952)

    Article  MathSciNet  Google Scholar 

  20. Ratschek, H., Schröder, G.: Representation of semigroups as systems of compact convex sets. Proc. Am. Math. Soc. 65, 24–28 (1977)

    Article  MathSciNet  Google Scholar 

  21. Schmidt, K.D.: Embedding theorems for classes of convex sets. Acta Appl. Math. 5(3), 209–237 (1986)

    Article  MathSciNet  Google Scholar 

  22. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 151, 2nd edn. Cambridge Univ. Press, Cambridge (2014)

    MATH  Google Scholar 

  23. Urbański, R.: A generalization of the Minkowski–Rådström–Hörmander theorem. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 24, 709–715 (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Grzybowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzybowski, J., Urbański, R. Order cancellation law in the family of bounded convex sets. J Glob Optim 77, 289–300 (2020). https://doi.org/10.1007/s10898-019-00865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00865-z

Keywords

Mathematics Subject Classification

Navigation