Skip to main content
Log in

Global dynamic optimization using edge-concave underestimator

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Optimization of problems with embedded system of ordinary differential equations (ODEs) is challenging and the difficulty is amplified due to the presence of nonconvexity. In this article, a deterministic global optimization method is presented for systems consisting of an objective function and constraints with integral terms and an embedded set of nonlinear parametric ODEs. The method is based on a branch-and-bound algorithm that uses a new class of underestimators recently proposed by Hasan (J Glob Optim 71:735–752, 2018). At each node of the branch-and-bound tree, instead of using a convex relaxation, an edge-concave underestimator or the linear facets of its convex envelope is used to compute a lower bound. The underestimator is constructed by finding valid upper bounds on the diagonal elements of the Hessian matrix of the nonconvex terms. Time dependent bounds on the state variables and diagonal elements of the Hessian are obtained by solving an auxiliary set of ODEs that is derived using the notion of differential inequalities. The performance of the edge-concave relaxation is compared to other approaches on several test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramson, M.A., Audet, C., Couture, G., Dennis Jr, J.E., Le Digabel, S., Tribes, C.: The NOMAD project (2011)

  2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs–I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Google Scholar 

  3. Arora, A., Bajaj, I., Iyer, S.S., Hasan, M.M.F.: Optimal synthesis of periodic sorption enhanced reaction processes with application to hydrogen production. Comput. Chem. Eng. 115, 89–111 (2018)

    Google Scholar 

  4. Bajaj, I., Hasan, M.M.F.: Deterministic global derivative-free optimization of black-box problems with bounded hessian. Optim. Lett. 12, 1–16 (2019)

    Google Scholar 

  5. Bajaj, I., Hasan, M.M.F.: UNIPOPT: univariate projection-based optimization without derivatives. Comput. Chem. Eng. 127, 71–87 (2019)

    Google Scholar 

  6. Bajaj, I., Iyer, S.S., Hasan, M.M.F.: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point. Comput. Chem. Eng. 116, 306–321 (2018)

    Google Scholar 

  7. Biegler, L.T.: An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Process. Process. Intensif. 46(11), 1043–1053 (2007)

    Google Scholar 

  8. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proc. Vol. 17(2), 1603–1608 (1984)

    Google Scholar 

  9. Boukouvala, F., Floudas, C.A.: ARGONAUT: algorithms for global optimization of constrained grey-box computational problems. Optim. Lett. 11(5), 895–913 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Chachuat, B., Latifi, M.: A new approach in deterministic global optimisation of problems with ordinary differential equations. In: Pardalos, P.M., Floudas, C.A. (eds.) Frontiers in Global Optimization, pp. 83–108. Springer, Berlin (2004)

    MATH  Google Scholar 

  11. Di Pillo, G., Liuzzi, G., Lucidi, S., Piccialli, V., Rinaldi, F.: A direct-type approach for derivative-free constrained global optimization. Comput. Optim. Appl. 65(2), 361–397 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Diedam, H., Sager, S.: Global optimal control with the direct multiple shooting method. Optim. Control Appl. Methods 39(2), 449–470 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Eason, J.P., Biegler, L.T.: A trust region filter method for glass box/black box optimization. AIChE J. 62, 3124 (2016)

    Google Scholar 

  14. Esposito, W.R., Floudas, C.A.: Deterministic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17(1–4), 97–126 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Esposito, W.R., Floudas, C.A.: Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39(5), 1291–1310 (2000)

    Google Scholar 

  16. Gadkar, K.G., Gunawan, R., Doyle, F.J.: Iterative approach to model identification of biological networks. BMC Bioinform. 6(1), 155 (2005)

    Google Scholar 

  17. Harwood, S.M., Barton, P.I.: Efficient polyhedral enclosures for the reachable set of nonlinear control systems. Math. Control Signals Syst. 28(1), 8 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Harwood, S.M., Barton, P.I.: Affine relaxations for the solutions of constrained parametric ordinary differential equations. Optim. Control Appl. Methods 39(2), 427–448 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Harwood, S.M., Scott, J.K., Barton, P.I.: Bounds on reachable sets using ordinary differential equations with linear programs embedded. IMA J. Math. Control Inf. 33(2), 519–541 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Hasan, M.M.F.: An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems. J. Glob. Optim. 71(4), 735–752 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Hasan, M.M.F., First, E.L., Floudas, C.A.: Cost-effective CO\(_2\) capture based on in silico screening of zeolites and process optimization. Phys. Chem. Chem. Phys. 15(40), 17601–17618 (2013)

    Google Scholar 

  22. Hofschuster, W., Krämer, W.: C-XSC 2.0– A C++ library for extended scientific computing. In: Abate, A. (ed.) Numerical Software with Result Verification, pp. 15–35. Springer, Berlin (2004)

    Google Scholar 

  23. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  24. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (2013)

    MATH  Google Scholar 

  25. Houska, B., Chachuat, B.: Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control. J. Optim. Theory Appl. 162(1), 208–248 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Hu, W., Lowry, B., Varma, A.: Kinetic study of glycerol oxidation network over Pt–Bi/C catalyst. Appl. Catal. B Environ. 106(1–2), 123–132 (2011)

    Google Scholar 

  27. Iyer, S.S., Bajaj, I., Balasubramanian, P., Hasan, M.M.F.: Integrated carbon capture and conversion to produce syngas: novel process design, intensification, and optimization. Ind. Eng. Chem. Res. 56(30), 8622–8648 (2017)

    Google Scholar 

  28. Katare, S., Bhan, A., Caruthers, J.M., Delgass, W.N., Venkatasubramanian, V.: A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Comput. Chem. Eng. 28(12), 2569–2581 (2004)

    Google Scholar 

  29. Kennedy, J.: Particle swarm optimization. In: Webb, G. (ed.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2011)

    Google Scholar 

  30. Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, Chelmsford (2012)

    Google Scholar 

  31. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations. Academic press, London (1969)

    MATH  Google Scholar 

  33. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. (TOMS) 37(4), 44 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Leineweber, D.B., Bauer, I., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced sqp strategy for large-scale dynamic process optimization. part 1: theoretical aspects. Comput. Chem. Eng. 27(2), 157–166 (2003)

    Google Scholar 

  35. Lima, R., François, G., Srinivasan, B., Salcedo, R.: Dynamic optimization of batch emulsion polymerization using msimpsa, a simulated-annealing-based algorithm. Ind. Eng. Chem. Res. 43(24), 7796–7806 (2004)

    Google Scholar 

  36. Lin, Y., Stadtherr, M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45(25), 8438–8448 (2006)

    Google Scholar 

  37. Lin, Y., Stadtherr, M.A.: Deterministic global optimization of nonlinear dynamic systems. AIChE J. 53(4), 866–875 (2007)

    Google Scholar 

  38. Luus, R., Cormack, D.: Multiplicity of solutions resulting from the use of variational methods in optimal control problems. Can. J. Chem. Eng. 50(2), 309–311 (1972)

    Google Scholar 

  39. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part i–convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    MATH  Google Scholar 

  40. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Miri, T., Tsoukalas, A., Bakalis, S., Pistikopoulos, E., Rustem, B., Fryer, P.: Global optimization of process conditions in batch thermal sterilization of food. J. Food Eng. 87(4), 485–494 (2008)

    Google Scholar 

  42. Moles, C.G., Banga, J.R., Keller, K.: Solving nonconvex climate control problems: pitfalls and algorithm performances. Appl. Soft Comput. 5(1), 35–44 (2004)

    Google Scholar 

  43. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003)

    Google Scholar 

  44. Papamichail, I., Adjiman, C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24(1), 1–33 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Papamichail, I., Adjiman, C.S.: Global optimization of dynamic systems. Comput. Chem. Eng. 28(3), 403–415 (2004)

    MATH  Google Scholar 

  46. Pontryagin, L.: Chapter 4 - Existence theorems. In: Pontryagin, L. (ed.) Ordinary Differential Equations, pp. 150–199. Pergamon, New York (1962)

    Google Scholar 

  47. Puranik, Y., Sahinidis, N.V.: Domain reduction techniques for global NLP and MINLP optimization. Constraints 22(3), 338–376 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Ramadesigan, V., Boovaragavan, V., Pirkle, J.C., Subramanian, V.R.: Efficient reformulation of solid-phase diffusion in physics-based lithium-ion battery models. J. Electrochem. Soc. 157(7), A854–A860 (2010)

    Google Scholar 

  49. Regis, R.G.: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng. Optim. 46(2), 218–243 (2014)

    MathSciNet  Google Scholar 

  50. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  51. Rump, S.M.: INTLAB—INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Springer, Berlin (1999)

    Google Scholar 

  52. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996)

    MathSciNet  MATH  Google Scholar 

  53. Sager, S., Claeys, M., Messine, F.: Efficient upper and lower bounds for global mixed-integer optimal control. J. Glob. Optim. 61(4), 721–743 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Sahlodin, A.M., Chachuat, B.: Convex/concave relaxations of parametric odes using taylor models. Comput. Chem. Eng. 35(5), 844–857 (2011)

    MATH  Google Scholar 

  55. Sahlodin, A.M., Chachuat, B.: Discretize-then-relax approach for convex/concave relaxations of the solutions of parametric odes. Appl. Numer. Math. 61(7), 803–820 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Schaber, S.D.: Tools for dynamic model development. Ph.D. thesis, Massachusetts Institute of Technology (2014)

  57. Scott, J.K.: Reachability analysis and deterministic global optimization of differential-algebraic systems. Ph.D. thesis, Massachusetts Institute of Technology (2012)

  58. Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems. Automatica 49(1), 93–100 (2013)

    MathSciNet  MATH  Google Scholar 

  59. Scott, J.K., Barton, P.I.: Improved relaxations for the parametric solutions of odes using differential inequalities. J. Glob. Optim. 57(1), 143–176 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Scott, J.K., Barton, P.I.: Interval bounds on the solutions of semi-explicit index-one DAEs. Part 2: computation. Numer. Math. 125(1), 27–60 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relaxations for the solutions of parametric odes. Optim. Control Appl. Methods 34(2), 145–163 (2013)

    MathSciNet  MATH  Google Scholar 

  62. Singer, A.B.: Global dynamic optimization. Ph.D. thesis, Massachusetts Institute of Technology (2004)

  63. Singer, A.B., Barton, P.I.: Bounding the solutions of parameter dependent nonlinear ordinary differential equations. SIAM J. Sci. Comput. 27(6), 2167–2182 (2006)

    MathSciNet  MATH  Google Scholar 

  64. Singer, A.B., Barton, P.I.: Global optimization with nonlinear ordinary differential equations. J. Glob. Optim. 34(2), 159–190 (2006)

    MathSciNet  MATH  Google Scholar 

  65. Tardella, F.: On a class of functions attaining their maximum at the vertices of a polyhedron. Discrete Appl. Math. 22(2), 191–195 (1988)

    MathSciNet  MATH  Google Scholar 

  66. Tardella, F.: On the existence of polyhedral convex envelopes. In: Pardalos, P.M., Floudas, C.A. (eds.) Frontiers in Global Optimization, pp. 563–573. Springer, Berlin (2004)

    Google Scholar 

  67. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2(3), 363–375 (2008)

    MathSciNet  MATH  Google Scholar 

  68. Vetukuri, S.R.R., Biegler, L.T., Walther, A.: An inexact trust-region algorithm for the optimization of periodic adsorption processes. Ind. Eng. Chem. Res. 49(23), 12004–12013 (2010)

    Google Scholar 

  69. Villanueva, M.E., Houska, B., Chachuat, B.: Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs. J. Glob. Optim. 62(3), 575–613 (2015)

    MathSciNet  MATH  Google Scholar 

  70. Wu, C., Teo, K.: Global impulsive optimal control computation. J. Ind. Manag. Optim. 2(4), 435–450 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Zhao, Y., Stadtherr, M.A.: Rigorous global optimization for dynamic systems subject to inequality path constraints. Ind. Eng. Chem. Res. 50(22), 12678–12693 (2011)

    Google Scholar 

  72. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control, vol. 40. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from U.S. National Science Foundation (Award Number CBET-1606027). Part of the research was conducted with the computing resources provided by Texas A&M High Performance Research Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Faruque Hasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Continuity and differentiability results of the solution of parametric ordinary differential equations

Consider the following system of ODEs:

$$\begin{aligned} \begin{aligned}& {\dot{y}} = \phi (t,y,x), \\& y(x,t_0) = y_0(x). \end{aligned} \end{aligned}$$
(31)

Let \(\varPi \) be a certain domain of \(n+p+1\)-dimensional space of the variables x, y and t, where \(\phi \) is defined. Further, assume that the function \(\phi \) and its partial derivatives with respect to y (\(\frac{\partial \phi }{\partial y}\)) are continuous in \(\varPi \).

Theorem 3

[46] If (\(t_0\), \(x_0\) and \(y_0\)) is a point in \(\varPi \), positive real numbers \(\beta _1\) and \(\beta _2\) exists such that for

$$\begin{aligned} \begin{aligned}&|x-x_0| < \beta _1, \end{aligned} \end{aligned}$$

the solution

$$\begin{aligned} \begin{aligned}& y = \chi (x,t) \end{aligned} \end{aligned}$$

of Eq. (31), which satisfies the initial condition \(\chi (x,t_0)=y_0\) is defined on the interval \(|t-t_0| < \beta _2\) and is a continuous function of the variables t and x.

Theorem 4

[46] Let \(\frac{\partial \phi }{\partial x}\) exist and be continuous in \(\varPi \). If (\(t_0\), \(x_0\), \(p_0\)) is a point in \(\varPi \), then there exists positive real numbers \(\beta '_1\) and \(\beta '_2\) such that for

$$\begin{aligned} \begin{aligned}&|x-x_0|< \beta '_1 \text { and } |t-t_0| < \beta '_2, \end{aligned} \end{aligned}$$

the solution of Eq. (31), \(\chi (x,t)\) that satisfies the initial condition \(\chi (x,t_0)=y_0\), has continuous partial derivative with respect to x i.e., \(\frac{\partial \chi (t,x)}{\partial x}\) is continuous.

Corollary 1

[46] Let all the partial derivatives of \(\phi \) with respect to the variables x and y exist up to the k-th order inclusive and are continuous, then the solution of Eq. (31), \(\chi (x,t)\) also have partial derivatives with respect to the parameters x up to the k-th order inclusive that are continuous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, I., Hasan, M.M.F. Global dynamic optimization using edge-concave underestimator. J Glob Optim 77, 487–512 (2020). https://doi.org/10.1007/s10898-020-00883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00883-2

Keywords

Navigation