Skip to main content
Log in

Unconstrained minimization of block-circulant polynomials via semidefinite program in third-order tensor space

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, unconstrained minimization with block-circulant structured polynomials is studied. A specifically designed method is presented to show that it can solve problems with sizes much larger than the classical Lasserre’s semidefinite relaxation. The proposed approach is in the same spirit of Lasserre’s relaxation but with a careful exploration of the underlying circulant structure, which helps reducing the sizes of the result semidefinite program problems significantly. Despite of the reduction, a certification for the global optimality is derived as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nie, J.: Sum of squares method for sensor network localization. Comput. Optim. Appl. 43(2), 151–179 (2009)

    Article  MathSciNet  Google Scholar 

  2. Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim. 20(1), 192–215 (2009)

    Article  MathSciNet  Google Scholar 

  3. Barmpoutis, A., Jian, B., Vemuri, B. C., Shepherd, T.M.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Proceedings of the 20th International Conference on Information Processing in Medical Imaging, Springer Berlin Heidelberg, 308-319 (2007)

  4. Feng, C., Lagoa, C.M., Sznaier, M.: Hybrid system identification via sparse polynomial optimization. American Control Conference (ACC), IEEE (2010)

  5. Li, Z.N., He, S.M., Zhang, S.Z.: Approximation Methods for Polynomial Optimization. Springer, New york (2012)

    Book  Google Scholar 

  6. Lasserre, J.B.: Moments. Imperial College Press, Positive Polynomials and Their Applications (2009)

  7. Lasserre, J.B.: Handbook on Semidefinite. Conic and Polynomial Optimization. Springer, United States (2012)

    MATH  Google Scholar 

  8. Shor, N.Z.: An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetika 5, 102–106 (1987)

    Google Scholar 

  9. Nesterov, Y.E.: Squared functional systems and optimization problems. In: Frenk, J.B.G., Roos, C., Terlaky, T., Zhang, S. (eds.) High Performance Optimization, pp. 405–440. Kluwer Academic Publishers, Netherlands (2000)

    Chapter  Google Scholar 

  10. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. California Institute of Technology, Pasadena (2000).. (Ph.D. Dissertation)

    Google Scholar 

  11. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96, 293–320 (2003)

    Article  MathSciNet  Google Scholar 

  12. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  13. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and Its Applications, 149, 1-114 (2009)

  14. Nie, J.: The \({\cal{A}}\)-truncated \(K\)-moment problem. Found. Comput. Math. 14, 1243–1276 (2014)

    Article  MathSciNet  Google Scholar 

  15. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Henrion, D., Garulli, A. (Eds), Positive polynomials in control, Lecture Notes on Control and Information Sciences, 312, 293-310, Springer, Berlin, (2005)

  16. Nestrov, Y., Nemirovski, A.: Interior Point Polynomial Time Methods in Convex Programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  17. Sun, D.F., Toh, K.C., Yuan, Y.C., Zhao, X.Y.: SDPNAL\(+\): a Matlab software for semidefinite programming with bound constraints (version 1.0). Optim. Method. Softw. 35(1), 87–115 (2020)

    Article  MathSciNet  Google Scholar 

  18. Nie, J., Wang, L.: Regularization methods for SDP relaxations in large-scale polynomial optimization. SIAM J. Matrix Anal. Appl. 22, 408–428 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Method. Softw. 11, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  20. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3-a Matlab software package for semidefinite programming. Optim. Method. Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  21. Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  MathSciNet  Google Scholar 

  22. Kim, S., Kojima, M., Waki, H.: Generalized Lagrangian duals and sums of squares relaxations of sparse polynomial optimization problems. SIAM J. Optim. 15(3), 697–719 (2005)

    Article  MathSciNet  Google Scholar 

  23. Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J. Appl. Algebra Geom. 3(2), 193–230 (2019)

    Article  MathSciNet  Google Scholar 

  24. Chen, H.B., Chen, Y.N., Li, G.Y., Qi, L.Q.: A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. Numer. Linear Algebra Appl. 25(1), e2125 (2018)

    Article  MathSciNet  Google Scholar 

  25. Lasserre, J.B., Toh, K.C., Yang, S.: A bounded degree SOS hierarchy for polynomial optimization. EURO J. Comput. Optim. 5, 87–117 (2017)

    Article  MathSciNet  Google Scholar 

  26. Chuong, T.D., Jeyakumar, V., Li, G.: A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs. J. Global Optim. 75(4), 885–919 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zheng, M.M., Huang, Z.-H., Wang, Y.: T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming. Comput. Optim. Appl. 78, 239–272 (2021)

    Article  MathSciNet  Google Scholar 

  28. Davis, P.J.: Circulant Matrices. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  29. Kilmer, M. E., Martin, C. D., Perrone, L.: A third-order generalization of the matrix SVD as a product of third-order tensors. Tech. Rep. TR-2008-4, Tufts University, Department of Computer Science, October (2008)

  30. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  31. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  32. Ben-Tal, A., Nemirovskii, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  33. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  34. Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trend. Commun. Inform. Theory 2(3), 155–239 (2005)

    Article  Google Scholar 

  35. Kaveh, A., Rahami, H.: Block circulant matrices and applications in free vibration analysis of cyclically repetitive structures. Acta Mech. 217, 51–62 (2011)

    Article  Google Scholar 

  36. Sun, J.M., Wang, S., Dong, Y.: Sparse block circulant matrices for compressed sensing. IET Commun. 7(13), 1412–1418 (2013)

    Article  Google Scholar 

  37. Liao, S. Y., Li, Z., Lin, X., Qiu, Q. R., Wang, Y. Z., Yuan, B.: Energy-efficient, high-performance, highly-compressed deep neural network design using block-circulant matrices. In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design, IEEE Press, (2017)

  38. Chillag, D.: Regular representations of semisimple algebras. separable field extensions, group characters, generalized circulants, and generalized cyclic codes. Linear Algebra Appl. 218, 147–183 (1995)

    Article  MathSciNet  Google Scholar 

  39. Mallat, S.G.: A Theory for multi-resolution signal decomposition: the wavelet representation. IEEE T. Pattern Anal. 11, 674–691 (1989)

    Article  Google Scholar 

  40. Kautsky, J., Turcajová, R.: Discrete biorthogonal wavelet transforms as block circulant matrices. Linear Algebra Appl. 223(224), 393–413 (1995)

    Article  MathSciNet  Google Scholar 

  41. Golomb, S.W., Gordon, B.: Codes with bounded synchronisation delay. Inform. Control 8, 355–372 (1965)

    Article  Google Scholar 

  42. Arquès, D., Michel, C.: A possible code in the genetic code. In: E. W. Mayr and C. Puech (Eds.) “STACS95,” no. 900 in LNCS, , SpringerVerlag, Berlin/Heidelberg/New York, 640-651, (1995)

  43. Berg, C.: The multidimensional moment problem and semi-groups, in Moments in Mathematics. H.J. Landau, ed., AMS, Providence, RI, 110-124, (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11871051 and 12171128), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LD19A010002 and LY22A010022) and China Postdoctoral Science Foundation (Grant No 2021MD703978).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MM., Huang, ZH. & Hu, SL. Unconstrained minimization of block-circulant polynomials via semidefinite program in third-order tensor space. J Glob Optim 84, 415–440 (2022). https://doi.org/10.1007/s10898-022-01148-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01148-w

Keywords

Mathematics Subject Classification

Navigation