Skip to main content
Log in

A maximum hypergraph 3-cut problem with limited unbalance: approximation and analysis

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph \(H=(V,E,w)\) into three disjoint subsets \(V_{1}\), \(V_{2}\), and \(V_{3}\) such that the sum of edge weights cross different parts is maximized subject to \(||V_{i}|-|V_{l}||\le B\) (\(\forall i\ne l\in \{1,2,3\}\)) for a given parameter B. This problem is NP-hard because it includes some well-known problems like the max 3-section problem and the max 3-cut problem as special cases. We formulate the MH3C-LU as a ternary quadratic program and present a randomized approximation algorithm based on the complex semidefinite programming relaxation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ageev, A.-A., Sviridenko, M.-I.: Approximation algorithms for maximum coverage and Max-Cut with given sizes of parts. In: Proceedings of the 7th Integer Programming and Combinatorial Optimization, pp. 17–30 (1999)

  2. Andersson, G.: An approximation algorithm for max \(p\)-section. In: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, vol. 1563, pp. 237–247 (1999)

  3. Andersson, G., Engebretsen, L.: Better approximation algorithms for set splitting and NOT-ALL-EQUAL SAT. Inf. Process. Lett. 65(6), 305–311 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Austrin, P., Benabbas, S., Georgiou, K.: Better balance by being biased: a 0.8776-approximation for max bisection. ACM Trans. Algorithms 13(1), 1–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barahona, F., Grötschel, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

    Article  MATH  Google Scholar 

  6. Feige, U., Langberg, M.: The RPR\(^{2}\) rounding technique for semidefinite programs. J. Algorithms 60(1), 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frieze, A.-M., Jerrum, M.: Improved approximation algorithms for max \(k\)-cut and max bisection. Algorithmica 18(1), 67–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galbiati, G., Maffioli, F.: Approximation algorithms for maximum cut with limited unbalance. Theoret. Comput. Sci. 385(1–3), 78–87 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goemans, M.-X., Williamson, D.-P.: Improved approximation algorithms for maximum Cut and satisfiability problem using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goemans, M.-X., Williamson, D.-P.: Approximation algorithms for max-3-cut and other problems via complex semidefinite programming. J. Comput. Syst. Sci. 68(2), 442–470 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halperin, E., Zwick, U.: A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Struct. Algorithms 20(3), 382–402 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hayrapetyan, A., Kempe, D., Pal, M., Svitkina, Z.: Unbalance graph cuts. In: Proceedings of the 13th Annual European Symposium, pp. 191–202 (2005)

  13. Huang, Y., Zhang, S.: Approximation algorithms for indefinite complex quadratic maximization problems. Sci. China Math. 53(10), 2697–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results formax-cut and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lu, C., Liu, Y.-F., Zhang, W.-Q., Zhang, S.-Z.: Tightness of a new and enhanced semidefinite relaxation for MIMO detection. SIAM J. Optim. 29(1), 719–742 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Raghavendra, P., Tan, N.: Approximating CSPs with global cardinality constraints using SDP hierarchies. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pp. 373–387 (2012)

  17. Sahni, S., Gonzales, T.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xia, Y.: New semidefinite programming relaxations for box constrained quadratic program. Sci. China Math. 56(4), 877–886 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, B., Yu, X., Zhang, X., Zhang, Z.: An SDP randomized approximation algorithm for max hypergraph cut with limited unbalance. Sci. China Math. 57(12), 2437–2462 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, Z., Hong, M., Luo, Z.-Q.: Semidefinite approximation for mixed binary quadratically constrained quadratic programs. SIAM J. Optim. 24(3), 1265–1293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye, Y.: A. 699-approximation algorithm for max-bisection. Math. Program. 90(1), 101–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, J., Ye, Y., Han, Q.: Improved approximations for max set splitting and max NAE SAT. Discrete Appl. Math. 142(1–3), 133–149 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank all the reviewers for their suggestions and comments that have greatly improved the quality of the paper. The first author is partially supported by the National Natural Science Foundation of China (Grant Nos. 11871081), the second author is supported by the Natural Science Foundation of Guangdong Province (2022A1515010900), and partially supported by the National Natural Science Foundation of China (Nos. U1811461), the third author is supported by the National Natural Science Foundation of China (Grant No. 12171168), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515010489) and Guangdong Province Higher Education Foundation (Grant No. 2021ZDZX1071), the fourth author is supported by the National Natural Science Foundation of China (Grant Nos. 12131004), the fifth author is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant 06446, the last author is supported by the National Natural Science Foundation of China (Grant Nos.11871280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we present a detailed proof of Lemma 5. As defined in Sect. 3.2, let \(\lambda =\sum \limits _{i<k\in S_j}\mathrm{Re}(Y_{ik})\) and \(N_{|S_j|}=\frac{|S_j|(|S_j|-1)}{2}\). Since

$$\begin{aligned} \sum _{i,k\in S_j}<y_i,y_k> \ge {\left\{ \begin{array}{ll} 0,&{}\hbox { if}\ |S_j|\equiv 0\;(\mod 3);\\ 1,&{}\text {otherwise}; \end{array}\right. } \end{aligned}$$

thus \(\frac{-|S_j|}{2}\le \lambda \le N_{|S_j|}\).

Based on the range of \(\lambda \), we can construct a new form for z in (4):

Lemma 9

$$\begin{aligned} z= {\left\{ \begin{array}{ll} 1,&{}\hbox { iff}\ \lambda \in \left[ \frac{-|S|}{2},\frac{(|S_j|-3)(|S_j|-1)}{2}\right] ;\\ \frac{2(N_{|S_j|}-\lambda )}{3(|S_j|-1)},&{}\text {iff } \lambda \in \left[ \frac{(|S_j|-3)(|S_j|-1)}{2},N_{|S_j|}\right) . \end{array}\right. } \end{aligned}$$

Proof

Consider the third constraint of (4):

$$\begin{aligned} z=\min \left\{ 1,\frac{1}{|S_j|-1}\sum _{i<k\in S_j}\frac{2}{3}(1-\mathrm{Re}({Y}_{ik}))\right\} >0. \end{aligned}$$

If \(-|S_j|/2\le \lambda \le (|S_j|-3)(|S_j|-1)/2\), then \([1/(|S_j|-1)]\sum _{i<k}2(1-\mathrm{Re}(Y_{ik}))/3\ge 1\), implying that \(z=1\). Otherwise, \([1/(|S_j|-1)]\sum _{i<k}2(1-\mathrm{Re}(Y_{ik}))/3\le 1\), implying that \(z=2(N_{|S_j|}-\lambda )/3(|S_j|-1)\). \(\square \)

Proof of Lemma 5

Let \((Y^{*},x^{*},z^{*})\) be an optimal solution of (4). If \(Y^{*}_{ik}<\beta \) for some \(i<k\in S_j\), then according to the first constraint of (4), we have that:

$$\begin{aligned} \alpha _{|S_j|}\ge x^{*}\ge \frac{2(1-f(\theta \beta ))}{3}. \end{aligned}$$

Otherwise \(Y^{*}_{ik}\ge \beta \), \(\forall i<k,\) implying that \(Y^{*}\) is feasible to (5) for some \(\lambda (Y^{*})\in [-|S|/2,N_{|S_j|}]\). From the second constraint of (4), we have that:

$$\begin{aligned} \alpha _{|S_j|}&\ge x^{*}\\&\ge \frac{1}{\tau _{|S_j|}}\frac{2}{3z^{*}}\sum _{i<k\in S_j}\left( 1-f\left( \mathrm{Re}\left( \theta Y^{*}_{ik}\right) \right) \right) \\&\ge \frac{1}{\tau _{|S_j|}}\frac{2}{3z^{*}}\left( N_{|S_j|}-\lambda \left( Y^{*}\right) \right) \\&\ge \frac{1}{\tau _{|S_j|}}\frac{2}{3z^{*}}q\left( \lambda \left( Y^{*}\right) ,\theta ,\beta \right) \\&=\gamma _{\theta ,\beta }\left( \lambda \left( Y^{*}\right) \right) \\&\ge \gamma ^{*}_{\theta ,\beta }. \end{aligned}$$

\(\square \)

If we can choose a suitable \(\beta \in [-0.5,1)\) for a give \(\theta \in (0,1]\) such that \(2(1-f(\theta \beta ))/3\) and \(\gamma ^{*}_{\theta ,\beta }\) are numerically close, then we will obtain a good lower bound for \(\alpha _{|S|}\). Note that \(2(1-f(\theta \beta ))/3\) is easy to compute for any given \(\theta \) and \(\beta \). Thus our main attention is to eliminate the dependence of \(\gamma ^{*}_{\theta ,\beta }\) on Y.

By observing the structure of \(\gamma ^{*}_{\theta ,\beta }\), it can be derived that the key is to construct the analytic form of \(q(\lambda ,\theta ,\beta )\) defined in (5). In the following, we will consider the structural feature of (5).

Lemma 10

There exists a minimal solution \(Y^{*}\) of (5) such that every variable \(Y^{*}_{ik}\) takes one of the three values, \(\{\beta , \nu ,1\}\).

Proof

For every optimal solution \(Y^{*}\) of (5), each variable \(Y^{*}_{ik}\) may take the value \(\beta \), 1, or some value in \((\beta ,1)\). Note that if \(Y^{*}_{ik}\) takes value in \((\beta ,1)\), it must satisfy the KKT condition, which means there is a Lagrange multiplier \(\mu \) for the first constraint of (5) such that every interior \(Y^{*}_{ik}\) satisfies:

$$\begin{aligned} -\frac{\theta }{f^{\prime }(\mathrm{Re}(\theta Y^{*}_{ik}))}=\mu . \end{aligned}$$

Since \(f^{\prime }\) is a monotone increasing function, thus the above equation has a unique solution. \(\square \)

Define a mixed integer and continuous function:

$$\begin{aligned} q_{\theta ,\beta }(\lambda ,\bar{N},\underline{N})=N_{|S_j|}-\bar{N}f(\theta )-\underline{N}f(\theta \beta )-(N_{|S_j|}-\bar{N}-\underline{N})f\left( \theta \frac{\lambda -\bar{N}-\underline{N}\beta }{N_{|S_j|}-\bar{N}-\underline{N}}\right) \end{aligned}$$

Lemma 11

For any \(\lambda \in [-|S|/2,N_{|S_j|})\), there exist two non-negative integers \(\bar{N}(\lambda )\) and \(\underline{N}(\lambda )\), such that

  1. (i)

    \(\bar{N}(\lambda )+\underline{N}(\lambda )\le N_{|S_j|}-1\);

  2. (ii)

    \(N_{|S_j|}\beta +\bar{N}(\lambda )(1-\beta )\le \lambda \le N_{|S_j|}-\underline{N}(\lambda )(1-\beta )\);

  3. (iii)

    The minimum value of (5) \(q(\lambda ,\beta ,\theta )=q_{\theta ,\beta }(\lambda ,\bar{N}(\lambda ),\underline{N}(\lambda )).\)

Proof

Suppose that in the optimal solution of program (5), the numbers of variables \(\mathrm{Re}(Y_{ik}^{*})\) with value 1 and \(\beta \) are denoted by \(\bar{N}^{\prime }\) and \(\underline{N}^{\prime }\), respectively. It can be derived that \(\bar{N}^{\prime }\) and \(\underline{N}^{\prime }\) are both nonnegative and \(\bar{N}^{\prime }+\underline{N}^{\prime }\le N_{|S_j|}\).

If \(\bar{N}^{\prime }+\underline{N}^{\prime }=N_{|S_j|}\), then \(\lambda <N_{|S_j|}\) implies that \(\bar{N}^{\prime }<N_{|S_j|}\) and \(\underline{N}^{\prime }\ge 1\). Let

$$\begin{aligned} \bar{N}(\lambda )=\bar{N}^{\prime }\ge 0,~\underline{N}(\lambda )=\underline{N}^{\prime }-1 \end{aligned}$$

such that \(\bar{N}(\lambda )+\underline{N}(\lambda )\le N_{|S_j|}-1\). Then \(N_{|S_j|}-\bar{N}(\lambda )-\underline{N}(\lambda )=1\) holds. In addition, it can be obtained from the linear constraint of the program (5) that

$$\begin{aligned} \frac{\lambda -\bar{N}(\lambda )-\underline{N}(\lambda )\beta }{N_{|S_j|}-\bar{N}(\lambda )-\underline{N}(\lambda )}=\beta . \end{aligned}$$

Thus, the optimum value of program (5) is

$$\begin{aligned} q(\lambda ,\theta ,\beta )=N_{|S_j|}-\bar{N}^{\prime }f(\theta )-\underline{N}^{\prime }f(\theta \beta )=q_{\theta ,\beta }(\lambda ,\bar{N}(\lambda ),\underline{N}(\lambda )). \end{aligned}$$

If \(\bar{N}^{\prime }+\underline{N}^{\prime }<N_{|S_j|}\), then according to Lemma 10, all the variables \(\mathrm{Re}(Y_{ik}^{*})\) equal to

$$\begin{aligned} \nu =\frac{\lambda -\bar{N}^{\prime }-\underline{N}^{\prime }\beta }{N_{|S_j|}-\bar{N}^{\prime }-\underline{N}^{\prime }}\in (\beta ,1). \end{aligned}$$

Now, let

$$\begin{aligned} \bar{N}(\lambda )=\bar{N}^{\prime }\ge 0,~\underline{N}(\lambda )=\underline{N}^{\prime }\ge 0 \end{aligned}$$

such that \(\bar{N}(\lambda )+\underline{N}(\lambda )\le N_{|S_j|}-1\). Thus the optimal value function of program (5) an also be expressed as

$$\begin{aligned} q(\lambda ,\theta ,\beta )=q_{\theta ,\beta }(\lambda ,\bar{N}(\lambda ),\underline{N}(\lambda )). \end{aligned}$$

(i) and (iii) have been proved. In order to prove (ii), we notice that it happens in both cases

$$\begin{aligned} \beta \le \frac{\lambda -\bar{N}(\lambda )-\underline{N}(\lambda )\beta }{N_{|S_j|}-\bar{N}(\lambda )-\underline{N}(\lambda )}\le 1. \end{aligned}$$

Thus \(N_{|S_j|}\beta +\bar{N}(\lambda )(1-\beta )\le \lambda \le N_{|S_j|}-\underline{N}(\lambda )(1-\beta )\). \(\square \)

Let

$$\begin{aligned} \gamma _{\theta ,\beta }(\lambda ,\bar{N},\underline{N})= {\left\{ \begin{array}{ll} \frac{2}{3\tau _{|S_j|}}q_{\theta ,\beta }(\lambda ,\bar{N},\underline{N}),&{}\hbox { if}\ \lambda \in \left[ \frac{-|S_j|}{2},\frac{(|S_j|-3)(|S_j|-1)}{2}\right] ;\\ \frac{|S_j|-1}{\tau _{|S_j|(N_{S_j}-\lambda )}}q_{\theta ,\beta }(\lambda ,\bar{N},\underline{N}),&{}\text {if } \lambda \in \left[ \frac{(|S_j|-3)(|S_j|-1)}{2},N_{|S_j|}\right) . \end{array}\right. } \end{aligned}$$

For a given pair of nonnegative integers \(\bar{N}\) and \(\underline{N}\), define a one-dimensional minimization problem

$$\begin{aligned} \gamma _{\theta ,\beta }(\bar{N},\underline{N})=\min \limits _{\lambda \in [-|S_j|/2,N_{|S_j|})\cap [N_{|S_j|}\beta +\bar{N}(\lambda )(1-\beta ), N_{|S_j|}-\underline{N}(\lambda )(1-\beta )]}\gamma _{\theta ,\beta }(\lambda ,\bar{N},\underline{N}). \end{aligned}$$
(25)

Corollary 3

There is a pair of nonnegative integers \(\bar{N}^{*}\) and \(\underline{N}^{*}\), such that \(\bar{N}^{*}+\underline{N}^{*}\le N_{|S_j|}-1\) and \(\gamma ^{*}_{\theta ,\beta }\ge \gamma _{\theta ,\beta }(\bar{N}^{*},\underline{N}^{*})\).

Proof

Let \(\lambda ^{*}\) denote the optimal solution of (6), i.e. \(\gamma ^{*}_{\theta ,\beta }=\gamma _{\theta ,\beta }(\lambda ^{*})\). According to Lemma 11, there exists a pair of nonnegative integers \(\bar{N}^{*}:=\bar{N}(\lambda ^{*})\) and \(\underline{N}^{*}:=\underline{N}(\lambda ^{*})\), such that:

$$\begin{aligned} q(\lambda ^{*},\theta ,\beta )=q_{\theta ,\beta }(\lambda ^{*},\bar{N}^{*},\underline{N}^{*}). \end{aligned}$$

By the definition of \(\gamma _{\theta ,\beta }(\lambda ,\bar{N},\underline{N})\) and \(\gamma _{\theta ,\beta }(\bar{N},\underline{N})\), we get \(\gamma ^{*}_{\theta ,\beta }\ge \gamma _{\theta ,\beta }(\bar{N}^{*},\underline{N}^{*})\). \(\square \)

When we do not know \(\bar{N}^{*}\) and \(\underline{N}^{*}\), we can enumerate all possible pairs of nonnegative integers (\(\bar{N}^{*}\), \(\underline{N}^{*}\)) with \(\bar{N}^{*}+\underline{N}^{*}\le N_{|S_j|}-1\). Without loss of generality, suppose that \(\bar{N}^{*}\) and \(\underline{N}^{*}\) are known. Then the minimization problem (6) can be reduced to an easier problem (25). For each pair (\(\bar{N}^{*}\), \(\underline{N}^{*}\)), we solve (25) to obtain \(\gamma _{\theta ,\beta }(\bar{N}^{*},\underline{N}^{*})\). Then we select \(\gamma _{\theta ,\beta }(\bar{N}^{*},\underline{N}^{*})\) among all candidate pairs as

$$\begin{aligned} \gamma ^{*}_{\theta ,\beta }=\min \limits _{(\bar{N}^{*}, \underline{N}^{*})|\bar{N}^{*}\ge 0,\underline{N}^{*}\ge 0,\bar{N}^{*}+\underline{N}^{*}\le N_{|S_j|}-1}\gamma _{\theta ,\beta }(\bar{N}^{*},\underline{N}^{*}). \end{aligned}$$

For any fixed pair (\(\bar{N}^{*}\), \(\underline{N}^{*}\)), we can solve (25) straightforwardly. If \(\lambda ^{*}\in [-|S_j|/2,(|S_j|-3)(|S_j|-1)/2]\), then

$$\begin{aligned} \gamma _{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*})=\frac{2}{3\tau _{|S_j|}}q_{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*}). \end{aligned}$$

Note that \(q_{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*})\) is decreasing in \(\lambda \), implying the same for \(\gamma _{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*})\). Thus \(\gamma _{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*})\) obtains its minimum value at the upper limit of \(\lambda ^{*}\), i.e.,

$$\begin{aligned} \lambda ^{*}=\min \left\{ \frac{(|S_j|-3)(|S_j|-1)}{2},N_{|S_j|}-\underline{N}^{*}(1-\beta )\right\} . \end{aligned}$$

If \(\lambda ^{*}\in [(|S_j|-3)(|S_j|-1)/2,N_{|S_j|})\), we have that:

$$\begin{aligned}&\gamma _{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*})=\frac{|S_j|-1}{\tau _{|S_j|}(N_{S_j}-\lambda )}q_{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*})\\&\quad =\frac{|S_j|-1}{\tau _{|S_j|}}\frac{N_{|S_j|}-\bar{N}^{*}f(\theta )-\underline{N}^{*}f(\theta \beta )-(N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*})f\left( \theta \frac{\lambda -\bar{N}^{*}-\underline{N}^{*}\beta }{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}}\right) }{N_{|S_j|}-1}. \end{aligned}$$

Let

$$\begin{aligned} x=\frac{\lambda -\bar{N}^{*}-\underline{N}^{*}\beta }{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}}\in [\beta ,1], \end{aligned}$$

then

$$\begin{aligned} \gamma _{\theta ,\beta }(\lambda ,\bar{N}^{*},\underline{N}^{*})=h(x):=\frac{|S_j|-1}{\tau _{|S_j|}}\frac{A-f(\theta x)}{B-x}, \end{aligned}$$

where

$$\begin{aligned} A=\frac{N_{|S_j|}-\bar{N}^{*}f(\theta )-\underline{N}^{*}f(\theta \beta )}{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}} \end{aligned}$$

and

$$\begin{aligned} B=\frac{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}\beta }{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}}. \end{aligned}$$

Note that \(A,B\ge 1\). Therefore, minimizing \(\gamma _{\theta ,\beta }(\lambda )\) over \(\lambda \in [N_{|S_j|}\beta +\bar{N}(\lambda )(1-\beta ), N_{|S_j|}-\underline{N}(\lambda )(1-\beta )]\cap [(|S_j|-3)(|S_j|-1)/2,N_{|S_j|})\) is equivalent to minimizing h(x) over

$$\begin{aligned} x\in [\beta ,1]\cap \left[ \frac{(|S_j|-3)(|S_j|-1)/2-\bar{N}^{*}-\underline{N}^{*}\beta }{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}},\frac{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}\beta }{N_{|S_j|}-\bar{N}^{*}-\underline{N}^{*}}\right) . \end{aligned}$$

Thus h(x) can be calculated numerically.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhang, ZB., Chen, Y. et al. A maximum hypergraph 3-cut problem with limited unbalance: approximation and analysis. J Glob Optim 87, 917–937 (2023). https://doi.org/10.1007/s10898-022-01183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01183-7

Keywords

Navigation