Skip to main content
Log in

A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider a knapsack-constrained maximization problem of a nonnegative monotone DR-submodular function f over a bounded integer lattice \([\varvec{B}]\) in \({\mathbb {R}}_+^n\), \(\max \{f({\varvec{x}}): {\varvec{x}}\in [\varvec{B}] \text {~and~} \sum _{i=1}^n {\varvec{x}}(i)c(i)\le 1\}\), where n is the cardinality of a ground set N and \(c(\cdot )\) is a cost function defined on N. Soma and Yoshida [Math. Program., 172 (2018), pp. 539-563] present a \((1-e^{-1}-O(\epsilon ))\)-approximation algorithm for this problem by combining threshold greedy algorithm with partial element enumeration technique. Although the approximation ratio is almost tight, their algorithm runs in \(O(\frac{n^3}{\epsilon ^3}\log ^3 \tau [\log ^3 \left\| \varvec{B}\right\| _\infty + \frac{n}{\epsilon }\log \left\| \varvec{B}\right\| _\infty \log \frac{1}{\epsilon c_{\min }}])\) time, where \(c_{\min }=\min _i c(i)\) and \(\tau \) is the ratio of the maximum value of f to the minimum nonzero increase in the value of f. Besides, Ene and Nguy\(\tilde{\check{\text {e}}}\)n [arXiv:1606.08362, 2016] indirectly give a \((1-e^{-1}-O(\epsilon ))\)-approximation algorithm with \(O({(\frac{1}{\epsilon })}^{ O(1/\epsilon ^4)}n \log {\Vert \varvec{B}\Vert }_\infty \log ^2{(n \log {\Vert \varvec{B}\Vert }_\infty )})\) time. But their algorithm is random. In this paper, we make full use of the DR-submodularity over a bounded integer lattice, carry forward the greedy idea in the continuous process and provide a simple deterministic rounding method so as to obtain a feasible solution of the original problem without loss of objective value. We present a deterministic algorithm and theoretically reduce its running time to a new record, \(O\big ((\frac{1}{\epsilon })^{O({1}/{\epsilon ^5})} \cdot n \log \frac{1}{c_{\min }} \log {\Vert \varvec{B}\Vert _\infty }\big )\), with the same approximate ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

We do not analyse or generate any datasets, because our work proceeds within a theoretical and mathematical approach. One can obtain the relevent materials from the references below.

Notes

  1. Compared to the definition of F over \(\{\varvec{x}\in {\mathbb {R}}^n_+: \varvec{0}\le \varvec{x}\le \varvec{B}\}\) in Soma et al. [36], we extend the domain of \(F(\cdot )\) to \({\mathbb {R}}^n_+\) to serve our algorithms better. This change cannot affect the properties of monotonicity, submodularity and convexity because for any pair of vectors \(\varvec{x},\varvec{y}\in {\mathbb {R}}^n_+\) with \(\varvec{x}\le \varvec{y}\), it holds that \((\varvec{x}\wedge \varvec{B})\le (\varvec{y}\wedge \varvec{B})\), \(F(\varvec{x})=F(\varvec{x}\wedge \varvec{B})\) and \(F(\varvec{y})=F(\varvec{y}\wedge \varvec{B})\).

  2. Without loss of generality, we assume that \(\frac{1}{\epsilon }\) is an integer throughout the paper.

References

  1. Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8, 307–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon N., Gamzu I., Tennenholtz M.: Optimizing budget allocation among channels and influencers. Proceedings of the 21st international conference on World Wide Web, 381-388 (2012)

  3. Anari N., Goel G., Nikzad A.: Mechanism design for crowdsourcing: An optimal \(1-1/e\) competitive budget-feasible mechanism for large markets. 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 266-275 (2014)

  4. Badanidiyuru A., Vondrák J.: Fast algorithms for maximizing submodular functions. Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms, 1497-1514 (2014)

  5. Bian A., Levy K., Krause A., Buhmann J.M.: Continuous dr-submodular maximization: Structure and algorithms. Advances in Neural Information Processing Systems, 486–496 (2017)

  6. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chekuri C, Quanrud K.: Submodular function maximization in parallel via the multilinear relaxation. Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, 303-322 (2019)

  8. Chekuri C., Vondrák J., Zenklusen R.: Dependent randomized rounding via exchange properties of combinatorial structures. 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 575-584 (2010)

  9. Chekuri C., Vondrák J., Zenklusen R.: Multi-budgeted matchings and matroid intersection via dependent rounding. Proceedings of the 2011 Annual ACM-SIAM Symposium on Discrete Algorithms, 1080-1097 (2011)

  10. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ene A., Nguy\(\tilde{\check{\rm e}}\)n H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. 46th International Colloquium on Automata, Languages, and Programming, 53:1-53:12 (2019)

  12. Ene A, Nguy\(\tilde{\check{\rm e}}\)n H L: A reduction for optimizing lattice submodular functions with diminishing returns, arXiv preprint arXiv:1606.08362, (2016)

  13. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feldman M., Naor J., Schwartz R.: A unified continuous greedy algorithm for submodular maximization. 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, 570-579 (2011)

  15. Fisher M.L., Nemhauser G.L., Wolsey L.A.: An analysis of approximations for maximizing submodular set functions-II. Polyhedral Combinatorics, 73-87 (1978)

  16. Fujishige, S.: Submodular functions and optimization, 58. Elsevier Science, Boston, Massachusetts (2005)

    MATH  Google Scholar 

  17. Goldengorin, B.: Maximization of submodular functions: Theory and enumeration algorithms. Eur. J. Oper. Res. 198(1), 102–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldengorin B., Tijssen G.A., Tso M.: The maximization of submodular functions: Old and new proofs for the correctness of the dichotomy algorithm, Graduate School/Research Institute Systems, Organisation and Management (1999)

  19. Gottschalk C., Peis B.: Submodular function maximization over distributive and integer lattices, arXiv:1505.05423 (2015)

  20. Hassani H., Soltanolkotabi M., Karbasi A.: Gradient methods for submodular maximization. Advances in Neural Information Processing Systems, 5841-5851 (2017)

  21. Kapralov M., Post I., Vondrák J.: Online submodular welfare maximization: Greedy is optimal. Proceedings of the 2013 Annual ACM-SIAM Symposium on Discrete Algorithms, 1216-1225 (2013)

  22. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krause A., Guestrin C.: Near-optimal nonmyopic value of information in graphical models. Proceedings of Uncertainty in Artificial Intelligence, 324-331 (2005)

  24. Krause, A., Singh, A.P., Guestrin, C.: Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)

    MATH  Google Scholar 

  25. Kulik, A., Shachnai, H., Tamir, T.: Approximations for monotone and nonmonotone submodular maximization with knapsack constraints. Math. Oper. Res. 38(4), 729–739 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin H., Bilmes J.: A class of submodular functions for document summarization. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 1, 510-520 (2011)

  27. Lovász L.: Submodular functions and convexity. Mathematical Programming The State of the Art, 235-257 (1983)

  28. Maehara T., Nakashima S., Yamaguchi Y.: Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice. Mathematical Programming, 1-35 (2021)

  29. Mokhtari A., Hassani H., Karbasi A.: Conditional gradient method for stochastic submodular maximization: closing the gap. International Conference on Artificial Intelligence and Statistics, 1886-1895 (2018)

  30. Nakashima, S., Maehara, T.: Subspace selection via DR-submodular maximization on lattices. Proceedings of the AAAI Conference on Artificial Intelligence 33(01), 4618–4625 (2019)

    Article  Google Scholar 

  31. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pugliese, R., Regondi, S., Marini, R.: Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Science and Management 4, 19–29 (2021)

    Article  Google Scholar 

  34. Singer Y.: How to win friends and influence people, truthfully: influence maximization mechanisms for social networks. Proceedings of the fifth ACM international conference on Web search and data mining, 733-742 (2012)

  35. Soma T., Kakimura N., Inaba K., Kawarabayashi K.: Optimal budget allocation: Theoreticalguarantee and efficient algorithm. International Conference on Machine Learning, 351-359 (2014)

  36. Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the integer lattice. Math. Program. 172, 539–563 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wolsey, L.A.: Maximising real-valued submodular functions: Primal and dual heuristics for location problems. Math. Oper. Res. 7(3), 410–425 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingqin Nong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by the National Natural Science Foundation of China under Grant Number 12171444 and 11871442, and was also supported in part by the Natural Science Foundation of Shandong Province under grant number ZR2019MA052 and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Nong, Q., Bao, S. et al. A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice. J Glob Optim 85, 15–38 (2023). https://doi.org/10.1007/s10898-022-01193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01193-5

Keywords

Mathematics Subject Classification

Navigation