Skip to main content
Log in

Aubin property for solution set in multi-objective programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, the behavior of the solutions of a multi-objective optimization problem, whose the objective functions are perturbed by adding a small linear term, is analyzed. In this regard, a new notion of Lipschitzian stability, by means of the Aubin property of the solution set, is defined. Lipschitz stable locally efficient solutions, as generalization of tilt/full stable solutions, are introduced and characterized by modern variational analysis tools. Applying the weighted sum method, the relationships between these solutions and full-stable local optimal solutions of the scalarized problem are investigated. The key tools in deriving our results come from the first- and second-order variational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See [31] for definition of isolated efficiency.

References

  1. Ben-Tal, A., Ghaoui, L.El., Nemirovski, A.: Robust Optimization. Princeton Ser. Appl. Math., Princeton University Press, NJ (2009)

  2. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Review. 53, 464–501 (2011)

    Article  MATH  Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Ser. Oper. Res, Springer, NY (2000)

    Book  MATH  Google Scholar 

  4. Clarke, F.: Functional Analysis. Calculus of Variations and Optimal Control. Springer-Verlag, London (2013)

  5. Dontchev, A.L., Rockafellar, R.T.: Characterizations of Lipschitzian stability in nonlinear programming. In: Fiacco, A.V. (ed.) Mathematical programming with data perturbations, 65–82. CRC Press (2020)

  6. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  7. Drusvyatskiy, D., Lewis, A.S.: Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential. SIAM J. Optim. 23, 256–267 (2013)

    Article  MATH  Google Scholar 

  8. Eberhard, A.C., Luo, Y., Liu, S.: On partial smoothness, tilt stability and the \(\cal{VU}\)-decomposition. Math. Program. 175, 155–196 (2019)

    Article  MATH  Google Scholar 

  9. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Ehrgott, M., Ide, J., Schöbel, A.: A Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239, 17–31 (2014)

    Article  MATH  Google Scholar 

  11. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Ser. Oper. Res, Springer, NY (2003)

  12. Geoffrion, A.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MATH  Google Scholar 

  13. Georgiev, P.Gr., Luc, D.T., Pardalos, P.: Robust aspects of solutions in deterministic multiple objective linear programming. Eur. J. Oper. Res. 229, 29–36 (2013)

  14. Klatte, D., Kummer, B.: Strong stability in nonlinear programming revisited. The ANZIAM J., Austral. Math. Soc. Ser. 40, 336–352 (1999)

    Article  MATH  Google Scholar 

  15. Levy, A.B., Poliquin, R.A., Rockafellar, R.T.: Stability of locally optimal solutions. SIAM J. Optim. 10, 580–604 (2000)

    Article  MATH  Google Scholar 

  16. Lewis, A.S., Zhang, S.: Partial smoothness, tilt stability, and generalized Hessians. SIAM J. Optim. 23, 74–94 (2013)

    Article  MATH  Google Scholar 

  17. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  18. Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In: Field, D.A., Komkov, V. (eds.) Theoretical Aspects of Industrial Design, pp. 32–46. SIAM, Philadelphia (1992)

    Google Scholar 

  19. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Grundlehren Math. Wiss. 330, Springer, Berlin (2006)

  20. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II: Basic Theory. Grundlehren Math. Wiss. 331, Springer, Berlin (2006)

  21. Mordukhovich, B.S., Nghia, T.T.A.: Second-order characterizations of tilt stability with applications to nonlinear programming. Math. Program. 149, 83–104 (2015)

    Article  MATH  Google Scholar 

  22. Mordukhovich, B.S., Outrata, J.V.: Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification. Kybernetika. 49, 446–464 (2013)

    MATH  Google Scholar 

  23. Mordukhovich, B.S., Outrata, J.V., Ramirez, C.H.: Second-order variational analysis in conic programming with applications to optimality conditions and stability. SIAM J. Optim. 25, 76–101 (2015)

    Article  MATH  Google Scholar 

  24. Mordukhovich, B.S., Outrata, J.V., Sarabi, M.E.: Full stability of locally optimal solutions in second-order cone programs. SIAM J. Optim. 24, 1581–1613 (2014)

    Article  MATH  Google Scholar 

  25. Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with application to tilt stability in optimization. SIAM J. Optim. 22, 953–986 (2012)

    Article  MATH  Google Scholar 

  26. Mordukhovich, B.S., Rockafellar, R.T., Sarabi, M.E.: Characterizations of full stability in constrained optimization. SIAM J. Optim. 23, 1810–1849 (2013)

    Article  MATH  Google Scholar 

  27. Mordukhovich, B.S., Sarabi, M.E.: Generalized Newton algorithms for tilt-stable minimizers in nonsmooth optimization. SIAM J. Optim. 31, 1184–1214 (2021)

    Article  MATH  Google Scholar 

  28. Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8, 287–299 (1998)

    Article  MATH  Google Scholar 

  29. Pourkarimi, L., Soleimani-damaneh, M.: Robustness in deterministic multi-objective linear programming with respect to the relative interior and angle deviation. Optimization. 65, 1983–2005 (2016)

    Article  MATH  Google Scholar 

  30. Rahimi, M., Soleimani-damaneh, M.: Characterization of Norm-Based Robust Solutions in Vector Optimization. J. Optim. Theory Appl. 185, 554–573 (2020)

    Article  MATH  Google Scholar 

  31. Rahimi, M., Soleimani-damaneh, M.: Isolated efficiency in nonsmooth semi-infinite multi-objective programming. Optimization. 67, 1923–1947 (2018)

    Article  MATH  Google Scholar 

  32. Rahimi, M., Soleimani-damaneh, M.: Robustness in Deterministic Vector Optimization. J. Optim. Theory Appl. 179, 137–162 (2018)

    Article  MATH  Google Scholar 

  33. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MATH  Google Scholar 

  34. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren Math. Wiss. 317, Springer, Berlin (2006)

  35. Sadeghi, S., Mirdehghan, S.M.: Stability of Local Efficiency in Multiobjective Optimization. J. Optim. Theory Appl. 178, 591–613 (2018)

    Article  MATH  Google Scholar 

  36. Shapiro, A., Bonnans, J.F.: Sensitivity analysis of parametrized programs under cone constraints. SIAM J. Control Optim. 30, 1409–1422 (1992)

    Article  MATH  Google Scholar 

  37. Zamani, M., Soleimani-damaneh, M., Kabgani, A.: Robustness in nonsmooth nonlinear multi-objective programming. Eur. J. Oper. Res. 247, 370–378 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the handling editor and anonymous referee for their helpful comments. Morteza Rahimi was supported by a grant from Basic Sciences Research Fund (No. BSRF-math-399-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Soleimani-damaneh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, M., Soleimani-damaneh, M. Aubin property for solution set in multi-objective programming. J Glob Optim 85, 441–460 (2023). https://doi.org/10.1007/s10898-022-01209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01209-0

Keywords

Mathematics Subject Classification

Navigation