Skip to main content
Log in

Outcome-space branch-and-bound outer approximation algorithm for a class of non-convex quadratic programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The quadratically constrained quadratic programming problem often appears in various fields such as engineering practice, management science and network communication. This paper mainly considers a non-convex quadratic programming problem with convex quadratic constraints. Firstly, the objective function of the problem is reconstructed into a form composed of only one convex function and several linear functions by using the eigenvalue decomposition technique of matrix. Then the reconstructed problem is converted to the equivalent problem with simple concave quadratic objective function in the outcome space by introducing appropriate auxiliary variables, and its feasible domain is convex. Based on the branch-and-bound framework which can guarantee the global optimality of the solution, a global optimization algorithm for solving the equivalent problem is proposed, which integrates the effective relaxation process and the branching process related to the outer approximation technique. Finally, the effectiveness and feasibility of the algorithm are illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Floudas, C., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 217–269. Kluwer Academic Publishers, Boston (1995)

    MATH  Google Scholar 

  2. Gould, N., Toint, P.: Numerical methods for large-scale non-convex quadratic programming. In: Siddiqi, A.H., Kocvara, M. (eds.) Trends in Industrial and Applied Mathematics, pp. 149–179. Springer, Berlin (2002)

    Google Scholar 

  3. Pardalos, P., Vavasis, S.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1(1), 15–22 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bomze, I., Overton, M.: Narrowing the difficulty gap for the Celis–Dennis–Tapia problem. Math. Program. 151(2), 459–476 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Fortin, C., Wolkowicz, H.: The trust region subproblem and semidefinite programming. Optim. Methods Softw. 19(1), 41–67 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Jeyakumar, V., Li, G.: Trust-region problems with linear inequality constraints: exact sdp relaxation, global optimality and robust optimization. Math. Program. 147(1–2), 171–206 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Bomze, I., Locatelli, M., Tardella, F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115(1), 31–64 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Bomze, I., Dür, M., Klerk, E., Quist, A., Roos, C., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18(4), 301–320 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Vandenbussche, D., Nemhauser, G.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 120(3), 531–557 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Vaish, H., Shetty, C.: The bilinear programming problem. Nav. Res. Logist. 23(2), 303–309 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Shen, P., Wang, K., Lu, T.: Outer space branch and bound algorithm for solving linear multiplicative programming problems. J. Glob. Optim. 78(3), 453–482 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Lobo, M., Vandenberghe, M., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26(2), 143–154 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Zhang, S.: Quadratic maximization and semidefinite relaxation. Math. Program. 87(3), 453–465 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program. 181(1), 1–17 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Azuma, G., Fukuda, M., Kim, S., Yamashita, M.: Exact SDP relaxations of quadratically constrained quadratic programs with forest structures. J. Glob. Optim. 82(2), 243–262 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Horst, R., Pardalos, P., Thoai, T.: Introduction to Global Optimization, 2nd., p. Chapter 3. Kluwer Academic Publishers, Boston (2000)

  18. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Vandenbussche, D., Nemhauser, G.: A branch-and-cut algorithm for nonconvex quadratic programming with box constraints. Math. Program. 102(3), 559–575 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Jiao, H., Liu, S.: A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming. Appl. Math. Comput. 250(1), 973–985 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Bomze, I.: Branch-and-bound approaches to standard quadratic optimization problems. J. Glob. Optim. 22(1), 17–37 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Bao, X., Sahinidis, N., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programs: a review and comparisons. Math. Program. 129(1), 129–157 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)

    MATH  Google Scholar 

  24. Lemarechal, C., Oustry, F.: SDP relaxations in combinatorial optimization from a Lagrangian viewpoint. In: Hadjisavvas, N., Pardalos, P. (eds.) Proceedings of Advances in Convex Analysis and Global Optimization, pp. 119–134. Springer, Boston (2001)

    MATH  Google Scholar 

  25. Shor, N.: Class of global minimum bounds of polynomial functions. Cybernetics 23(6), 731–734 (2011)

    MATH  Google Scholar 

  26. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Discrete Math. 3(3), 411–430 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Bomze, I.: Copositive optimization—Recent developments and applications. Eur. J. Oper. Res. 216(3), 509–520 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Deng, Z., Fang, S., Jin, Q., Xing, W.: Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme. Eur. J. Oper. Res. 229(1), 21–28 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Arima, N., Kim, S., Kojima, A.: A quadratically constrained quadratic optimization model for completely positive cone programming. SIAM J. Optim. 23(4), 2320–2340 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Lu, C., Fang, S., Jin, Q., Wang, Z., Xing, W.: KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems. SIAM J. Optim. 21(4), 1475–1490 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Sturm, J., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4(1), 33–52 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Luo, H., Bai, X., Lim, G., Peng, J.: New global algorithms for quadratic programming with a few negative eigenvalues based on alternative direction method and convex relaxation. Math. Program. Comput. 11, 119–171 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Horst, R., Thoai, N.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Dinh, T., Thi, H.: Recent advances in DC programming and DCA. In: Transactions on Computational Intelligence XIII, pp. 1–37. Springer, Berlin (2014)

  36. Ashtiani, A., Ferreira, P.: A branch-and-cut algorithm for a class of sum-of-ratios problems. Appl. Math. Comput. 268, 596–608 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Oliveira, R., Ferreira, P.: A convex analysis approach for convex multiplicative programming. J. Glob. Optim. 41(1), 579–592 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Lu, C., Deng, Z., Jin, Q.: An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints. J. Glob. Optim. 67(3), 457–493 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Maranas, C., Floudas, C.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7(2), 143–182 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Li, J., Wang, P., Ma, L.: A new algorithm for the general quadratic programming problems with box constraints. Numer. Algorithms 55(1), 79–85 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.2 (2020). http://cvxr.com/cvx/download

  42. Konno, H., Kuno, T.: Multiplicative programming problems. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 369–405. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  43. Matsui, T.: NP-hardness of linear multiplicative programming and related problems. J. Glob. Optim. 9(2), 113–119 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Shen, P., Huang, B.: Global algorithm for solving linear multiplicative programming problems. Optim. Lett. 14, 693–710 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant (11961001), the Construction Project of first-class subjects in Ningxia higher Education(NXYLXK2017B09) and the Major proprietary funded project of North Minzu University(ZDZX201901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YueLin Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Gao, Y., Liu, X. et al. Outcome-space branch-and-bound outer approximation algorithm for a class of non-convex quadratic programming problems. J Glob Optim 86, 61–92 (2023). https://doi.org/10.1007/s10898-022-01255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01255-8

Keywords

Mathematics Subject Classification

Navigation