Skip to main content
Log in

The interpolating element-free Galerkin method for the p-Laplace double obstacle mixed complementarity problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, the interpolating element-free Galerkin method is presented for the p-Laplace double obstacle mixed complementarity problem when \(1<p<2\) and \(p>2\). First, a nonlinear power penalty equation is obtained by a power penalty approximation method and the existence and uniqueness of the solution to the power penalty equation are proved when \(1<p<2\) and \(p>2\). The convergence of the power penalty solution to the original problem and the penalty estimates are analyzed. Second, the interpolating element-free Galerkin method is constructed for the nonlinear power penalty equation. The numerical implementation is introduced in detail and the convergence of the interpolating element-free Galerkin method is also given. Error estimates indicate that the convergence order depends on not only the spatial step h and the number of bases functions m in the interpolating element-free Galerkin method, but also the index k in the penalty term, the penalty factor \(\lambda \) and p. For different p, the method that how to choose the optimal k and \(\lambda \) is also given. Numerical examples verify error estimates and illustrate the influence of each parameter on the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997). https://doi.org/10.1137/S0036144595285963

    Article  MathSciNet  MATH  Google Scholar 

  2. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48(1–3), 161–220 (1990). https://doi.org/10.1007/bf01582255

    Article  MathSciNet  MATH  Google Scholar 

  3. Billups, S.C., Dirkse, S.P., Ferris, M.C.: A comparison of large scale mixed complementarity problem solvers. Comput. Optim. Appl. 7(1), 3–25 (1997). https://doi.org/10.1023/a:1008632215341

    Article  MathSciNet  MATH  Google Scholar 

  4. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23(6), 2095–2122 (2002). https://doi.org/10.1137/s1064827500382324

    Article  MathSciNet  MATH  Google Scholar 

  5. Gabriel, S.A.: An NE/SQP method for the bounded nonlinear complementarity problem. J. Optim. Theory Appl. 97(2), 493–506 (1998). https://doi.org/10.1023/a:1022643104274

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, K., Wang, S.: Convergence property of an interior penalty approach to pricing American option. J. Ind. Manag. Optim. 7(2), 435–447 (2011). https://doi.org/10.3934/jimo.2011.7.435

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, S., Yang, X.Q., Teo, K.L.: Power penalty method for a linear complementarity problem arising from American option valuation. J. Optim. Theory Appl. 129(2), 227–254 (2006). https://doi.org/10.1007/s10957-006-9062-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Q., Chu, D., Tan, R.C., Ye, Y.: Double obstacle control problem for a quasilinear elliptic variational inequality with source term. Nonlinear Anal. Real World Appl. 18, 108–120 (2014). https://doi.org/10.1016/j.nonrwa.2014.01.007

    Article  MathSciNet  MATH  Google Scholar 

  9. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. Elsevier North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  10. Zhou, Z., Peng, Y.: The locally Chen–Harker–Kanzow–Smale smoothing functions for mixed complementarity problems. J. Global Optim. 74(1), 169–193 (2019). https://doi.org/10.1007/s10898-019-00739-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrett, J.W., Liu, W.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68(4), 437–456 (1994). https://doi.org/10.1007/s002110050071

    Article  MathSciNet  MATH  Google Scholar 

  12. Jouvet, G., Bueler, E.: Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation. SIAM J. Appl. Math. 72(4), 1292–1314 (2012). https://doi.org/10.1137/110856654

    Article  MathSciNet  MATH  Google Scholar 

  13. Barrett, J.W., Liu, W.B.: Finite element approximation of the \(p\)-Laplacian. Math. Comput. 61(204), 523–537 (1993). https://doi.org/10.1090/s0025-5718-1993-1192966-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Banz, L., Lamichhane, B.P., Stephan, E.P.: Higher order FEM for the obstacle problem of the \(p\)-Laplacian—a variational inequality approach. Comput. Math. Appl. 76(7), 1639–1660 (2018). https://doi.org/10.1016/j.camwa.2018.07.016

    Article  MathSciNet  MATH  Google Scholar 

  15. Ebmeyer, C., Liu, W.: Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of \(p\)-Laplacian problems. Numer. Math. 100(2), 233–258 (2005). https://doi.org/10.1007/s00211-005-0594-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Oberman, A.M.: Finite difference methods for the infinity Laplace and \(p\)-Laplace equations. J. Comput. Appl. Math. 254, 65–80 (2013). https://doi.org/10.1016/j.cam.2012.11.023

    Article  MathSciNet  MATH  Google Scholar 

  17. Duan, Y., Wang, S., Zhou, Y.: A power penalty approach to a mixed quasilinear elliptic complementarity problem. J. Global Optim. 81(4), 901–918 (2021). https://doi.org/10.1007/s10898-021-01000-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Y.Y., Wang, S., Yang, X.Q.: A penalty approximation method for a semilinear parabolic double obstacle problem. J. Global Optim. 60(3), 531–550 (2013). https://doi.org/10.1007/s10898-013-0122-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, K.Y.: Error estimates for a mixed finite volume method for the \(p\)-Laplacian problem. Numer. Math. 101(1), 121–142 (2005). https://doi.org/10.1007/s00211-005-0610-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian. SIAM J. Sci. Comput. 38(1), A545–A566 (2016). https://doi.org/10.1137/15m1008014

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, R., Shen, Q., Zhu, Z.: Convergence analysis and error estimates of the element-free Galerkin method for a class of parabolic evolutionary variational inequalities. Comput. Math. Appl. 75(1), 22–32 (2018). https://doi.org/10.1016/j.camwa.2017.08.031

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding, R., Wang, Y., Shen, Q.: Convergence analysis and error estimates of the element-free Galerkin method for the second kind of elliptic variational inequalities. Comput. Math. Appl. 78(8), 2584–2592 (2019). https://doi.org/10.1016/j.camwa.2019.03.059

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, Q., Ding, R., Wang, Y.: Error estimates for a contact problem with the Tresca friction or the simplified coulomb friction in elastic materials by the element-free Galerkin method. Appl. Math. Model. 77, 690–708 (2020). https://doi.org/10.1016/j.apm.2019.07.052

    Article  MathSciNet  MATH  Google Scholar 

  24. Dehghan, M., Narimani, N.: An element-free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue. Appl. Math. Model. 59, 500–513 (2018). https://doi.org/10.1016/j.apm.2018.01.034

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, T., Li, X., Xu, L.: Error analysis of an implicit Galerkin meshfree scheme for general second-order parabolic problems. Appl. Numer. Math. 177, 58–78 (2022). https://doi.org/10.1016/j.apnum.2022.03.005

    Article  MathSciNet  MATH  Google Scholar 

  26. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981). https://doi.org/10.1090/s0025-5718-1981-0616367-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Ren, H., Cheng, Y.: The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems. Eng. Anal. Boundary Elem. 36(5), 873–880 (2012). https://doi.org/10.1016/j.enganabound.2011.09.014

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, D., Cheng, Y.: The interpolating element-free Galerkin (IEFG) method for three-dimensional potential problems. Eng. Anal. Boundary Elem. 108, 115–123 (2019). https://doi.org/10.1016/j.enganabound.2019.08.021

    Article  MathSciNet  MATH  Google Scholar 

  29. Dehghan, M., Abbaszadeh, M.: Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl. Numer. Math. 137, 252–273 (2019). https://doi.org/10.1016/j.apnum.2018.10.004

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, Q., Ding, R., Zhu, Z.: Convergence analysis and error estimates of the interpolating element-free Galerkin method for the evolutionary variational inequality of the second-order in time. Comput. Appl. Math. 39(2), 130 (2020). https://doi.org/10.1007/s40314-020-01154-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, F., Wu, Q., Cheng, Y.: A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems. Int. J. Appl. Mech. 11(01), 1950006 (2019). https://doi.org/10.1142/S1758825119500066

    Article  Google Scholar 

  32. Wu, Q., Peng, P., Cheng, Y.: The interpolating element-free Galerkin method for elastic large deformation problems. Sci. China Technol. Sci. 64, 364–374 (2021). https://doi.org/10.1007/s11431-019-1583-y

    Article  Google Scholar 

  33. Liu, D., Cheng, Y.: The interpolating element-free galerkin method for three-dimensional transient heat conduction problems. Results Phys. 19, 103477 (2020). https://doi.org/10.1016/j.rinp.2020.103477

    Article  Google Scholar 

  34. Wu, Q., Peng, M., Fu, Y., Cheng, Y.: The dimension splitting interpolating element-free Galerkin method for solving three-dimensional transient heat conduction problems. Eng. Anal. Boundary Elem. 128, 326–341 (2021). https://doi.org/10.1016/j.enganabound.2021.04.016

    Article  MathSciNet  MATH  Google Scholar 

  35. Mirzaei, D., Dehghan, M.: MLPG approximation to the \(p\)-Laplace problem. Comput. Mech. 46(6), 805–812 (2010). https://doi.org/10.1007/s00466-010-0521-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, X., Dong, H.: The element-free Galerkin method for the nonlinear p-Laplacian equation. Comput. Math. Appl. 75(7), 2549–2560 (2018). https://doi.org/10.1016/j.camwa.2017.12.019

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, X., Li, S.: Analyzing the nonlinear \(p\)-Laplacian problem with the improved element-free Galerkin method. Eng. Anal. Bound. Elem. 100, 48–58 (2019). https://doi.org/10.1016/j.enganabound.2018.04.004

    Article  MathSciNet  MATH  Google Scholar 

  38. Tatari, M., Kamranian, M., Dehghan, M.: The finite point method for the \(p\)-Laplace equation. Comput. Mech. 48(6), 689–697 (2011). https://doi.org/10.1007/s00466-011-0613-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Lewicka, M., Manfredi, J.J.: The obstacle problem for the \(p\)-Laplacian via optimal stopping of tug-of-war games. Probab. Theory Relat. Fields 167(1–2), 349–378 (2015). https://doi.org/10.1007/s00440-015-0684-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, S., Huang, C.-S.: A power penalty method for solving a nonlinear parabolic complementarity problem. Nonlinear Anal. Theory Methods Appl. 69(4), 1125–1137 (2008). https://doi.org/10.1016/j.na.2007.06.014

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun, F., Wang, J., Cheng, Y., Huang, A.: Error estimates for the interpolating moving least-squares method in n-dimensional space. Appl. Numer. Math. 98, 79–105 (2015). https://doi.org/10.1016/j.apnum.2015.08.001

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, J., Wang, J., Sun, F., Cheng, Y.: An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems. Int. J. Comput. Methods 10(06), 1350043 (2013). https://doi.org/10.1142/S0219876213500436

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99, 77–97 (2016). https://doi.org/10.1016/j.apnum.2015.07.006

    Article  MathSciNet  MATH  Google Scholar 

  44. Wan, J., Li, X.: Analysis of a superconvergent recursive moving least squares approximation. Appl. Math. Lett. 133, 108223 (2022). https://doi.org/10.1016/j.aml.2022.108223

    Article  MathSciNet  MATH  Google Scholar 

  45. Huang, C., Wang, S.: A power penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 38(1), 72–76 (2010). https://doi.org/10.1016/j.orl.2009.09.009

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, W., Yan, N.: Quasi-norm local error estimators for \(p\)-Laplacian. SIAM J. Numer. Anal. 39(1), 100–127 (2001). https://doi.org/10.1137/s0036142999351613

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Nos. 11401416 and 11771319).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Ding, C. & Shen, Q. The interpolating element-free Galerkin method for the p-Laplace double obstacle mixed complementarity problem. J Glob Optim 86, 781–820 (2023). https://doi.org/10.1007/s10898-022-01260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01260-x

Keywords

Navigation