Skip to main content
Log in

Extended McCormick relaxation rules for handling empty arguments representing infeasibility

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

McCormick’s relaxation technique is one of the most versatile and commonly used methods for computing the convex relaxations necessary for deterministic global optimization. The core of the method is a set of rules for propagating relaxations through basic arithmetic operations. Computationally, each rule operates on four-tuples describing each input argument in terms of a lower bound value, an upper bound value, a convex relaxation value, and a concave relaxation value. We call such tuples McCormick objects. This paper extends McCormick’s rules to accommodate input objects that are empty (i.e., the convex relaxation value lies above the concave, or both relaxation values lie outside the bounds). Empty McCormick objects provide a natural way to represent infeasibility and are readily generated by McCormick-based domain reduction techniques. The standard McCormick rules are strictly undefined for empty inputs and applying them anyway can yield relaxations that are non-convex/concave on infeasible parts of their domains. In contrast, our extended rules always produce relaxations that are well-defined and convex/concave on their entire domain. This capability has important applications in reduced-space global optimization, global dynamic optimization, and domain reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Global Optim. 52, 1–28 (2012). https://doi.org/10.1007/s10898-011-9685-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Khan, K.A., Watson, H.A.J., Barton, P.I.: Differentiable McCormick relaxations. J. Global Optim. 67, 687–729 (2017). https://doi.org/10.1007/s10898-016-0440-6

    Article  MathSciNet  MATH  Google Scholar 

  3. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I - convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/BF01580665

    Article  MATH  Google Scholar 

  4. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. Soc. Ind. Appl. Math. 20(2), 573–601 (2009). https://doi.org/10.1137/080717341

    Article  MathSciNet  MATH  Google Scholar 

  5. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  6. Najman, J., Mitsos, A.: Tighter McCormick relaxations through subgradient propagation. J. Global Optim. 75, 565–593 (2019). https://doi.org/10.1007/s10898-019-00791-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Schweidtmann, A.M., Mitsos, A.: Deterministic global optimization with artificial neural networks embedded. J. Optim. Theory Appl. 180, 925–948 (2019). https://doi.org/10.1007/s10957-018-1396-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Scott, J.K.: Reachability Analysis and Deterministic Global Optimization of Differential-Algebraic Systems. phd thesis, Massachusetts Institute of Technology (2012)

  9. Scott, J.K., Barton, P.I.: Convex and concave relaxations for the parametric solutions of semi-explicit index-one differential-algebraic equations. J. Optim. Theory Appl. 156(3), 617–649 (2013). https://doi.org/10.1007/s10957-012-0149-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Scott, J.K., Barton, P.I.: Improved relaxations for the parametric solutions of ODEs using differential inequalities. J. Global Optim. 57, 143–176 (2013). https://doi.org/10.1007/s10898-012-9909-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relaxations for the solutions of parametric ODEs. Optim. Control Appl. Methods 34(2), 145–163 (2013). https://doi.org/10.1002/oca.2014

    Article  MathSciNet  MATH  Google Scholar 

  12. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Global Optim. 51(4), 569–606 (2011). https://doi.org/10.1007/s10898-011-9664-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Shao, Y., Scott, J.K.: Convex relaxations for global optimization under uncertainty described by continuous random variables. AIChE J. 64(8), 3023–3033 (2018). https://doi.org/10.1002/aic.16064

    Article  Google Scholar 

  14. Shen, K., Scott, J.K.: Rapid and accurate reachability analysis for nonlinear dynamic systems by exploiting model redundancy. Comput. Chem. Eng. 106, 596–608 (2017). https://doi.org/10.1016/j.compchemeng.2017.08.001

    Article  Google Scholar 

  15. Shen, K., Scott, J.K.: Exploiting nonlinear invariants and path constraints to achieve tighter reachable set enclosures using differential inequalities. Math. Control Signals Syst. 32, 101–127 (2020). https://doi.org/10.1007/s00498-020-00254-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Stuber, M.D., Barton, P.I.: Robust simulation and design using semi-infinite programs with implicit functions. Int. J. Reliab. Saf. 5(3/4), 378–397 (2011). https://doi.org/10.1504/IJRS.2011.041186

    Article  Google Scholar 

  17. Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. 30(3), 424–460 (2015). https://doi.org/10.1080/10556788.2014.924514

    Article  MathSciNet  MATH  Google Scholar 

  18. Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Global Optim. 59, 633–662 (2014). https://doi.org/10.1007/s10898-014-0176-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Wechsung, A.: Global optimization in reduced space. phd thesis, Massachusetts Institute of Technology (2014)

  20. Wechsung, A., Barton, P.I.: Global optimization of bounded factorable functions with discontinuities. J. Global Optim. 58, 1–30 (2014). https://doi.org/10.1007/s10898-013-0060-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Wechsung, A., Scott, J.K., Watson, H.A.J., Barton, P.I.: Reverse propagation of McCormick relaxations. J. Global Optim. 63, 1–36 (2015). https://doi.org/10.1007/s10898-015-0303-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph K. Scott.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by the National Science Foundation under Grant No. 1949747.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 212 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Scott, J.K. Extended McCormick relaxation rules for handling empty arguments representing infeasibility. J Glob Optim 87, 57–95 (2023). https://doi.org/10.1007/s10898-023-01315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-023-01315-7

Keywords

Navigation