Skip to main content
Log in

Finite Volume Formulation of Compact Upwind and Central Schemes with Artificial Selective Damping

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The present paper describes the use of compact upwind and compact central schemes in a Finite Volume formulation with an extension towards arbitrary meshes. The different schemes are analyzed and tested on several numerical experiments. A new formulation of artificial selective damping that is applicable on non-uniform Cartesian meshes is presented. Results are shown for a 1D advection equation, a 2D rotating Gaussian pulse and a subsonic inviscid vortical flow on uniform and non-uniform meshes and for a non-linear acoustic pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bui, T. T. (1999). A parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows. NASA/TM-1999–206570.

  2. Carpenter, M. H., Gottlieb, D., and Abarbanel, S. (1993). The stability of numerical boundary treatment for compact high-order finite-difference schemes. J. Comput. Phys. 108, 272–295.

    Google Scholar 

  3. Carpenter, M. H., Gottlieb, D., and Abarbanel, S. (1994). Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220–236.

    Google Scholar 

  4. Gaitonde, D., and Shang, J. S. (1997). Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena. J. Comput. Phys. 138, 617–643.

    Google Scholar 

  5. Gamet, L., Ducros, F., Nicoud, F., and Poinsot, T. (1999). Compact Finite Difference Schemes On Non-uniform Meshes. Application To Direct Numerical Simulations of Compressible Flows. Int. J. Numer. Meth. Fl. 29, 159–191.

    Google Scholar 

  6. Goedheer, W. J., and Potters, J. H. H. M. (1985). A Compact Finite Difference Scheme on a Non-Equidistant Mesh. J. Comput. Phys. 61, 269–279.

    Google Scholar 

  7. Kim, J. W., and Lee, D. J. (1996). Optimized compact finite difference schemes with maximum resolution. AIAA Journal. 34(5).

  8. Kim, J. W., and Lee, D. J. (2000). Adaptive Nonlinear Artifiical Dissipation Model for Computational Aeroacoustics, AIAA Paper No. 2000–1978.

  9. Kobayashi, M. H. (1999). On a class of pad´e finite volume methods. J. Comput. Phys. 156, 137–180.

    Google Scholar 

  10. Lacor, C., Smirnov, S., and Baelmans, M. A Finite Volume Formulation for Compact Schemes on Arbitrary Meshes with Applications to LES. Proc. 1st Int. Conf. on CFD, 2000. 1st Int. Conf. on CFD, Kyoto, 11–14/7/2000.

  11. Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.. 103, 16–42.

    Google Scholar 

  12. Lin, S.-Y, Chen, Y.-F, and Shih, S.-C. (1997). Numerical Study of MUSCL Schemes for Computational Aeroacoustics, AIAA–97–0023.

  13. Pereira, M. J., Kobayashi, M. H., and Pereira, C. J. High order compact schemes in finite volume context. In B. Suarez E. Onate, G. Bugeda, editor, ECCOMAS 2000, Barcelona. CIMNE, 2000.

  14. Ramboer, J., and Lacor, C. Large Eddy Simulation Applications: Flow over a circular cylinder at Re=3900. Workshop FLOWNET Thematic Network, 2001. DLR, Goettingen, 6–7/2/2001.

  15. Sengupta, T. K., Sridar, D., Sarkar, S., and De, S. (2001). Spectral analysis of flux vector splitting finite volume methods. Int. J. Numer. Meth. Fl. 37, 149–174.

    Google Scholar 

  16. Smirnov, S., Lacor, C., Lessani, B., Meyers, J., and Baelmans, M. A Finite Volume Formulation for Compact schemes on Arbitrary Meshes with Applications to RANS and LES. In E. Onate, G. Bugeda, and B. Suarez, editors, CD-ROM Proceedings ECCOMAS 2000, Barcelona. CIMNE, 2000.

  17. Smirnov, S., Lacor, C., and Baelmans, M. (2001). A Finite Volume Formulation for Compact Schemes with Applications to LES. AIAA Paper No. 2001–2546, AIAA 15th CFD Conference.

  18. Tam, C. K. W. Computational Aeroacoustics: Methods and Applications. An AIAA Professional Development Short Course, June 10–11, Lahaina, HI, 2000.

  19. Visbal, R. M., and Gaitonde, V. D. (1998). Higher-order-accurate methods for complex unsteady subsonic flows. In AIAA paper 98–0131, 36th Aerospace Science Meeting, Reno, NV.

  20. Visbal, R. M., and Gaitonde, V. D. (2002). On the use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes. J. Comput. Phys. 181, 155–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broeckhoven, T., Smirnov, S., Ramboer, J. et al. Finite Volume Formulation of Compact Upwind and Central Schemes with Artificial Selective Damping. Journal of Scientific Computing 21, 341–367 (2004). https://doi.org/10.1007/s10915-004-1321-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-1321-6

Navigation