Skip to main content
Log in

Finite Volume Discretization and Multilevel Methods in Flow Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article is intended as a preliminary report on the implementation of a finite volume multilevel scheme for the discretization of the incompressible Navier–Stokes equations. As is well known the use of staggered grids (e.g. MAC grids, Perić et al. Comput. Fluids, 16(4), 389–403, (1988)) is a serious impediment for the implementation of multilevel schemes in the context of finite differences. This difficulty is circumvented here by the use of a colocated finite volume discretization (Faure et al. (2004a) Submitted, Perić et al. Comput. Fluids, 16(4), 389–403, (1988)), for which the algebra of multilevel methods is much simpler than in the context of MAC type finite differences. The general ideas and the numerical simulations are presented in this article in the simplified context of a two-dimensional Burgers equations; the two-, and three-dimensional Navier–Stokes equations introducing new difficulties related to the incompressibility condition and the time discretization, will be considered elsewhere (see Faure et al. (2004a) Submitted and Faure et al. (2004b), in preparation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Costa L. Dettori D. Gottlieb R. Temam (2001) ArticleTitleTime marching multilevel techniques for evolutionary dissipative problems SIAM J. Sci. Comput. 23 IssueID1 46–65 Occurrence Handle2002h:65159 Occurrence Handle10.1137/S1064827598339967

    Article  MathSciNet  Google Scholar 

  2. C. Calgaro A. Debussche J. Laminie (1998) ArticleTitleOn a multilevel approach for the two-dimensional Navier–Stokes equations with finite elements Int. J. Numer. Methods Fluids 27 IssueID1–4, Special Issue 241–258 Occurrence Handle98m:76117

    MathSciNet  Google Scholar 

  3. J.-P. Chehab (1998) ArticleTitleIncremental unknowns method and compact schemes RAIRO Modél. Math. Anal. Numér. 32 IssueID1 51–83 Occurrence Handle0914.65110 Occurrence Handle99a:65146

    MATH  MathSciNet  Google Scholar 

  4. Chorin A.J. Numerical solution of the Navier–Stokes equations. Math. Comp. 22:745–762

  5. C. Calgaro J. Laminie R. Temam (1997) ArticleTitleDynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization Appl. Numer. Math. 23 IssueID4 403–442 Occurrence Handle98d:76124 Occurrence Handle10.1016/S0168-9274(96)00074-8

    Article  MathSciNet  Google Scholar 

  6. Chen M., Temam R. (1991). The incremental unknown method. I, II. Appl. Math. Lett. 4(3), 73–76; 77–80

    Google Scholar 

  7. T. Dubois F. Jauberteau R. Temam (1999) Dynamic Multilevel Methods and the Numerical Simulation of Turbulence Cambridge University Press Cambridge

    Google Scholar 

  8. Eymard, R., Gallouët, T., and Herbin, R. (2000). Finite volume methods. Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, pp. 713–1020.

  9. Faure, S., Laminie, J., and Temam, R. (2004a). Colocated finite volume schemes for fluid flows. Submitted

  10. Faure, S., Laminie, J., and Temam, R. (2004b). Finite volume discretization and multilevel methods for the Navier-Stokes equations. In prep.

  11. S. Garcia (2000) ArticleTitleIncremental unknowns for solving the incompressible Navier–Stokes equations Math. Comput. Simulation 52 IssueID5–6 445–489 Occurrence Handle2001d:76086

    MathSciNet  Google Scholar 

  12. Hou, T. Y. editor. Multiscale Modeling and Simulation.

  13. Harlow F.H., Welch J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12)

  14. F.S. Lien M.A. Leschziner (1994a) ArticleTitleA general non-orthogonal colocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, part 1 : Computational implementation Comput. Methods Appl. Mech. Eng. 114 123–148 Occurrence Handle95a:76073a

    MathSciNet  Google Scholar 

  15. F.S. Lien M.A. Leschziner (1994b) ArticleTitleA general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, part 2 : Application Comput. Methods Appl. Mech. Eng. 114 149–167 Occurrence Handle95a:76073b

    MathSciNet  Google Scholar 

  16. J.-L. Lions R. Temam S.H. Wang (1992) ArticleTitleNew formulations of the primitive equations of atmosphere and applications Nonlinearity 5 IssueID2 237–288 Occurrence Handle93e:35088 Occurrence Handle10.1088/0951-7715/5/2/001

    Article  MathSciNet  Google Scholar 

  17. J.-L. Lions R. Temam S.H. Wang (1992) ArticleTitleOn the equations of the large-scale ocean Nonlinearity 5 IssueID5 1007–1053 Occurrence Handle93k:86004 Occurrence Handle10.1088/0951-7715/5/5/002

    Article  MathSciNet  Google Scholar 

  18. Laminie, J. and Zahrouni, E. (2003).A dynamical multilevel scheme for the burgers equation : wavelet and hierarchical finite element. Numerical Methods in PDEA, To appear.

  19. M. Perić R. Kessler G. Sheuerer (1988) ArticleTitleComparison of finite-volume numerical methods with staggered and colocated grids Comput. Fluids 16 IssueID4 389–403

    Google Scholar 

  20. Pouit, F. (1998). Etude de schémas numériques multiniveaux utilisant les Inconnues Incrémentales, dans le cadre des différences finies : application à la mécanique des fluides. Thèse, Université Paris 11.

  21. Rasch, P., and Thomas, S. J. (2005). Computational and numerical methods in atmoshphere and ocean. In Lectures given at the Summer School on Applications of Advanced Mathematical and Computational Methods to Atmospheric and Oceanic Problems (MCAO2003), National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA.

  22. E. Stein R. De Borst T.J.R. Hughes (Eds) (2004) Encyclopedia of Computational Mechanics Wiley New York

    Google Scholar 

  23. K.M. Smith W.K. Cope S.P. Vanka (1993) ArticleTitleA multigrid procedure for three-dimensional flows on nonorthogonal collocated grids Int. J. Numer. Methods Fluids 17 IssueID10 887–904 Occurrence Handle94e:76075 Occurrence Handle10.1002/fld.1650171005

    Article  MathSciNet  Google Scholar 

  24. R. Temam (1969) ArticleTitleSur l’approximation de la solution des equations de navier-stokes par la méthode des pas fractionnaires, i et ii Arch. Rational Mech. Anal. 32 IssueID2 135–153 Occurrence Handle0195.46001 Occurrence Handle38 #6250

    MATH  MathSciNet  Google Scholar 

  25. R. Temam (1990) ArticleTitleInertial manifolds and multigrid methods SIAM J. Math. Anal. 21 IssueID1 154–178 Occurrence Handle0715.35039 Occurrence Handle91e:65132 Occurrence Handle10.1137/0521009

    Article  MATH  MathSciNet  Google Scholar 

  26. Temam R. (1993). Méthodes multirésolutions en analyse numérique. In Boundary value problems for partial differential equations and applications, vol 29 of RMA Res. Notes Appl. Math., Masson, Paris, pp. 253–276

  27. R. Temam (1994) Applications of inertial manifolds to scientific computing: a new insight in multilevel methods In Trends and perspectives in applied mathematics, vol 100. Springer New York 293–336

    Google Scholar 

  28. R. Temam (1996) ArticleTitleMultilevel methods for the simulation of turbulence J. Comput. Phys. 127 IssueID2 309–315 Occurrence Handle0860.76059 Occurrence Handle97e:76068 Occurrence Handle10.1006/jcph.1996.0177

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Kan ParticleVan (1986) ArticleTitleA second-order accurate pressure-correction scheme for viscous incompressible flow SIAM J. Sci. Statist. Comput. 7 870–891 Occurrence Handle0594.76023 Occurrence Handle87h:76008

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, S., Laminie, J. & Temam, R. Finite Volume Discretization and Multilevel Methods in Flow Problems. J Sci Comput 25, 231–261 (2005). https://doi.org/10.1007/s10915-004-4642-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4642-6

Keywords