Skip to main content
Log in

Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new hybrid numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. The idea behind the new finite-volume-particle (FVP) method is to use different schemes for the flow and the pollution computations: the shallow water equations are numerically integrated using a finite-volume scheme, while the transport equation is solved by a particle method. This way the specific advantages of each scheme are utilized at the right place. This results in a significantly enhanced resolution of the computed solution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audusse E., and Bristeau M. (2003). Transport of pollutant in shallow water. A two time steps kinetic method. M2AN Math. Model. Numer. Anal. 37:389–416

    Article  CAS  MathSciNet  MATH  Google Scholar 

  2. Bale D.S., LeVeque R.J., Mitran S., and Rossmanith J.A. (2002). A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24:955–978

    Article  MathSciNet  MATH  Google Scholar 

  3. Chertock A., and Kurganov A. (2004). On a hybrid finite-volume-particle method. Submitted

  4. Engquist B., Lötstedt P., and Sjögreen B. (1989). Nonlinear filters for efficient shock computation. Math. Comp. 52:509–537

    Article  MathSciNet  MATH  Google Scholar 

  5. Gallouët T., Hérard J.-M., and Seguin N. (2003). Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32:479–513

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerbeau J.F., and Perthame B. (2001). Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1:89–102

    Article  MathSciNet  MATH  Google Scholar 

  7. Gottlieb S., Shu C.-W., and Tadmor E. (2001). High order time discretization methods with the strong stability property. SIAM Rev. 43:89–112

    Article  MathSciNet  MATH  Google Scholar 

  8. Kurganov A., and Levy D. (2002). Central-upwind schemes for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 36:397–425

    MathSciNet  Google Scholar 

  9. Kurganov A., Noelle S., and Petrova G. (2001). Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23:707–740

    Article  MathSciNet  MATH  Google Scholar 

  10. van Leer B. (1979). Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32:101–136

    Google Scholar 

  11. Nessyahu H., and Tadmor E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87:408–463

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Perthame B., and Simeoni C. (2001). A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38:201–231

    Article  MathSciNet  MATH  Google Scholar 

  13. Raviart P.A. (1983). An analysis of particle methods. In Brezzi, F. (ed.), Numerical Methods in Fluid Dynamics, Lecture Notes in Mathematics, Vol. 1127, Springer-Verlag, pp. 243–324

  14. Russo G. (2001). Central schemes for balance laws. Hyperbolic problems: Theory, numerics, application:Vol. II (Magdeburg, 2000), Internat. Ser. Numer. Math. 141, Birkhauser, Basel, pp. 821–829

  15. de Saint-Venant A.J.C. (1871). Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des marées dans leur lit. C.R. Acad. Sci. Paris. 73:147–154

    Google Scholar 

  16. Sweby P.K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21:995–1011

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Chertock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertock, A., Kurganov, A. & Petrova, G. Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water. J Sci Comput 27, 189–199 (2006). https://doi.org/10.1007/s10915-005-9060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9060-x

Keywords

Navigation