Skip to main content
Log in

A Boundary Integral Equation Method for Photonic Crystal Fibers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

A boundary integral equation for the eigenmode of photonic crystal fibers is formulated and numerically solved using the Nyström method. The real and imaginary parts of the propagation constant, which are related to the dispersion and the confinement loss of fibers, are obtained using a secant method. This formulation is very flexible to handle the fiber geometry, and therefore can be applied to photonic crystal fibers with novel refractive index profile and hole geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeeluck A.K., Litchinitser N.M., Headley C., and Eggleton B.J. (2002). Analysis of spectral characteristics of photonic bandgap waveguides. Opt. Exp 10(23):1320–1333

    ADS  Google Scholar 

  2. Abramowitz, M., and Stegun, I. A. (1970). Handbook of Mathematical Functions, Dover.

  3. Birks T.A., Knight J.C., and Russell P.St.J. (1997). Endless single-mode photonic crystal fiber. Opt. Lett. 22:961–963

    CAS  ADS  Google Scholar 

  4. Bise, R. T., Windeler, R. S., Kranz, K. S., Kerbage, C., Eggleton, B. J., and Trevor, D. J. (2002). Tunable photonic band gap fiber. In Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series, Optical Society of America, Washington, D.C., pp. 466–468.

  5. Burden, R. L., and Faires, J. D. (2000). Numerical Analysis, Brooks Cole.

  6. Colton, D., and Kress, R. (1997). Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn., Springer.

  7. Chen Q.-Y., Tang T., Teng Z.-H. (2004). A fast numerical method for integral equations of the first kind with logarithmic kernel using mesh grading. J. Comput. Math. 22:287–298

    MATH  MathSciNet  Google Scholar 

  8. Cregan R.F., Mangan B.J., Knight J.C., Birks T.A., Russell P.St.J., Roberts P.J., and Allan D.C. (1999). Single-mode photonic band gap guidance of light in air. Science 285(3):1537–1539

    Article  PubMed  CAS  Google Scholar 

  9. Duguay M.A., Kokubun Y., and Koch T.L. (1986). Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 49(1):13–15

    Article  CAS  ADS  Google Scholar 

  10. Fini J.M. (2003). Analysis of microstructure optical fibers by radial scattering decomposition. Opt. Lett. 28(12):992–994

    PubMed  Google Scholar 

  11. Knight J.C. (2003). Photonic crystal fibres. Nature 424:847–851

    Article  PubMed  CAS  ADS  Google Scholar 

  12. Litchinitser N.M., Dunn S.C., Steinvurzel P.E., Eggleton B.J., White T.P., Mcphedran R.C., and Martijn de Sterke C. (2004). Application of an ARROW model for designing tunable photonic devies. Opt. Exp. 12(8):1540–1550

    Article  ADS  Google Scholar 

  13. Nédélec, J.-C. (2001). Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problem, Springer.

  14. Russell P. (2003). Photonic crystal fibers. Science 299:358–362

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Saitoh K., and Koshiba M. (2002). Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38(7):927–933

    Article  CAS  Google Scholar 

  16. Venakides S., Haider M.A., and Papanicolaou V. (2000). Boundary integral calculations of two dimensional electromagnetic scattering by phtonic crystal Fabry–Perot structures. SIAM J. Appl. Math. 60(5):1686–1706

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang X., Lou J., Lu C., and Zhao C.-L. (2004). Modeling of PCF with multiple reciprocity boundary element method. Opt. Exp. 12(5):961–966

    ADS  Google Scholar 

  18. White T.P., Mcphedran R.C., de Sterke C.M., Botten L.C., and Steel M.J. (2001). Confinement losses in microstructured optical fiber. Opt. Lett. 26(21):1660–1662

    ADS  Google Scholar 

  19. White T.P., Mcphedran R.C., de Sterke C.M., Litchinitser N.M., and Eggleton B.J. (2002). Resonance and Scattering in microstructured optical fibers. Opt. Lett. 27(22):1977–1979

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Additional information

Min Hyung Cho: Support for this work is partially provided by the National Science Foundation Grant DMS-0408309 and the Department of Energy Grant DE-FG02-05ER25678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, M.H., Cai, W. & Her, TH. A Boundary Integral Equation Method for Photonic Crystal Fibers. J Sci Comput 28, 263–278 (2006). https://doi.org/10.1007/s10915-006-9080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9080-1

Keywords

Navigation