Skip to main content
Log in

Simulating Plasma Microwave Diagnostics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Computational simulation of plasma diagnostics via microwave absorption has been successfully accomplished. This simulation capability is developed from solutions to a combination of the three-dimensional Maxwell equations and the generalized Ohm’s law in the time domain. As the simulation procedure developed, numerical results were obtained for a range of plasma transport properties including electrical conductivity, permittivity, and plasma frequency. The present results reveal the wave reflection at the media interface and substantial distortion of the electromagnetic field within a thin plasma sheet from a guided microwave. The present numerical simulation also accurately predicts the microwave blackout phenomenon as the wave propagates through a thick plasma sheet. The diffractions and refractions occurring at antenna apertures and passing through a plasma column are captured numerically. Finally, the numerical simulation has successfully duplicated a plasma diagnostic experiment in a hypersonic magneto-hydrodynamic channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shang J.S. (2002). Shared knowledge in computational fluid dynamics, electromagnetics, and magneto-aerodynamics. Prog. Aerospace Sci. 38(6–7): 449–467.

    Article  ADS  Google Scholar 

  2. Roth J.R. (2000). Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J. 38(7): 1166–1172.

    CAS  ADS  Google Scholar 

  3. Artana G., Adamo J., Leger L., Moreau E., Touchard G. (2002). Flow control with electrohydrodyamic actuators. AIAA J. 40(9): 1773–1779.

    CAS  ADS  Google Scholar 

  4. Enloe C.L., McLaughlin T.E., Van Dyken R.D., Kachner K.D., Jumper E.J., Corke T.J. (2004). Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J. 42, 589–594.

    ADS  Google Scholar 

  5. Shang J.S., Surzhikov S.T. (2004). Magneto-aerodynamic interaction for hypersonic flow control. AIAA J. 43(8): 1633–1643.

    ADS  Google Scholar 

  6. Park C., Mehta U.B., Bogdanoff D.W. (2001). MHD Energy bypass scramjet performance with real gas effects. J. Propul. power 19(5): 1049–1057.

    Google Scholar 

  7. Miles R.B., Brown G.L., Lempert W.R., Yetter R., Williams G.L., Bogdonoff S.M., Natelson D., Guest J.R. (1995). Radiatively driven hypersonic wind tunnel. AIAA J. 33(8): 1463–1470.

    CAS  ADS  Google Scholar 

  8. Anikin, N., Kukaev, E., Starikovskaia, S., and Starikovskii, A. (2004). Ignition of hydrogen-air and methane-air mixtures at low temperatures by nanosecond high voltage discharge. AIAA 2004–0833, Reno NV, January 2004.

  9. Heald M.A., Wharton C.B. (1965). Plasma Diagnostics with Microwaves. Wiley, New York.

    Google Scholar 

  10. Golant, V. E. (1983). Methods of diagnostics based on the interaction of electromagnetic radiation with a plasma, basic plasma physics I. In Galeev, A., and Sudan, R. (eds.), North Holland Publishing Co., Amsterdam, 630–680.

  11. Raizer Yu., Gas P. (1991). Discharge Physics. Springer-Verlag, Berlin.

    Google Scholar 

  12. Smoot L.D., Underwood D.L. (1966). Prediction of microwave attenuation characteristics of rocket exhausts. J. Spacecraft Rockets 3(3): 302–309.

    CAS  ADS  Google Scholar 

  13. Fedrick R.A., Blevins J.A., Coleman H.W. (1995). Investigation of microwave attenuation measurements in a laboratory-scale motor plume. J. Spacecraft Rockets 32(5): 923–925.

    ADS  Google Scholar 

  14. Kurpik, A., Menart, J., Shang, J., Kimmel, R., and Hayes, J. (2003). Technique for making microwave absorption measurements in a thin plasma discharge. AIAA 2003–3748, Orlando, FL, 23–26 June 2003.

  15. Shang J.S., Kimmel R., Hayes J., Tyler C., Menart J. (2005). Hypersonic magneto-aerodynamic experimental facility for magneto-aerodynamics interaction. J Spacecraft Rockets 42(1).

  16. Kennet H., Taylor R.A. (1996). Earth re-entry simulation of planetary entry environment. J. Spacecraft Rockets 3(4): 504–512.

    ADS  Google Scholar 

  17. Krause J.D. (1953). Electromagnetics McGraw-Hill, pp.390–481.

  18. Henderson, S., Menart, J., Shang, J. S., Kimmel, R., and Hayes, J. (2004). Data reduction analysis for a cylindrical, double langmuir probe operating in a high speed flow. AIAA 2004–0360, Reno NV, January 5–8, 2004.

  19. Surzhikov S.T., Shang J.S. (2004). Two-Component plasma model for two-dimensional glow discharge in magnetic field. J. Comp. Phys. 1999, 437–464.

    Article  ADS  CAS  Google Scholar 

  20. Lele S.K. (1992). Compact difference schemes with spectral-like resolution. J. Comp. Phys. 103, 16–42.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Carpenter M.H., Gottlieb D., Abarbanel S. (1995). Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to higher-order compact systems. J. Comp. Phys. 117, 300–317.

    Article  Google Scholar 

  22. Shang J.S. (1999). High-order compact-difference schemes for time-dependent maxwell equations. J. Comput. Phys. 153, 312–333.

    Article  CAS  MATH  MathSciNet  ADS  Google Scholar 

  23. Gaitonde D.V., Shang J.S., Young J.L. (1999). Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Numer. Methods Eng. 45, 1849–1869.

    Article  MATH  Google Scholar 

  24. Taflove, A. (1997). Numerical issues regarding finite-difference time-domain modeling of microwave structures, time-domain methods for microwave structure analysis and design. In Itoh, T., and Houshmand, B. IEEE Press, New York, pp. 59–75.

  25. Mur G. (1981). Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetics field equations. IEEE Trans. Electromagn. Compatibility 23, 377–382.

    Google Scholar 

  26. Berenger J.-P. (1994). A perfect matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114, 185–200.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Shang J.S., Fithen R.M. (1996). A Comparative study of characteristic-based algorithms for the maxwell equations. Comput. Phys. 125, 378–394.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Shang J.S., Gaitonde D. (1995). Characteristic-based, time-dependent maxwell equation solver on a general curvilinear frame. AIAA J. 33(3): 491–498.

    Article  MATH  ADS  Google Scholar 

  29. Shang, J. S. (2003). Computational electromagnetics for microwave attenuation in weakly ionized air. AIAA 2003–3621, Orlando, FL, 23–26.

  30. Mitchner M., Kruger C.H., Jr. (1973). Partially Ionized Gases. Wiley, New York 126–241.

    Google Scholar 

  31. Gustafasson B. (1975). The Convergence rate for difference approximations to mixed initial boundary value problems. Math. Comp. 29, 396–414.

    Article  Google Scholar 

  32. Balanis C.A. (1982). Antenna Theory: Analysis and Design. Wiley, NY, 8.3–8.86.

    Google Scholar 

  33. Maloney J., Smith, G., Thiele, E., and Gandhi, O. (2002). Modeling of antennas, computational electromagnetics: the-finite-difference, time-domain methods. In Taflove, A., and Hagnes, S. (Eds.), 2nd ed., Artech House, Boston, pp. 627–701.

  34. Katz D., Piket-May M., Taflove A., Umashankar K. (1991). FDTD analysis of electromagnetic wave radiation from systems containing horn antennas. IEEE Tans. Antenna Propagation. 39(8):1203–1212.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, J.S. Simulating Plasma Microwave Diagnostics. J Sci Comput 28, 507–532 (2006). https://doi.org/10.1007/s10915-006-9092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9092-x

Keywords

Navigation