We present a coupled moving mesh and level set method for computing incompressible two-phase flow with surface tension. This work extends a recent work of Di et al. [(2005). SIAM J. Sci. Comput. 26, 1036–1056] where a moving mesh strategy was proposed to solve the incompressible Navier–Stokes equations. With the involvement of the level set function and the curvature of the interface, some subtle issues in the moving mesh scheme, in particular the solution interpolation from the old mesh to the new mesh and the choice of monitor functions, require careful considerations. In this work, a simple monitor function is proposed that involves both the level set function and its curvature. The purpose for designing the coupled moving mesh and level set method is to achieve higher resolution for the free surface by using a minimum amount of additional expense. Numerical experiments for air bubbles and water drops are presented to demonstrate the effectiveness of the proposed scheme.
Similar content being viewed by others
References
Anderson A., Zheng X., Cristini V. (2005). Adaptive unstructured volume remeshing - I: The method. J. Comput. Phys. 208, 616–625
Aulisa E., Manservisi S., Scardovelli R. (2003). A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. J. Comput. Phys. 188, 611–639
Beckett G., Mackenzie J.A., Robertson M.L. (2006). An r-adaptive finite element method for the solution of the two-dimensional phase-field equations. Commun. Comput. Phys. 1, 805–826
Barth T.J., Sethian J.A. (1998). Numerical schemes for the Hamilton–Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145, 1–40
Brackbill J.U., Kothe D.B., Zemach C. (1992). A continuum method for modeling surface tension. J. Comput. Phys. 100, 335
Boulton-Stone J.M., Blake J.R. (1993). Gas bubble bursting at a free surface. J. Fluid Mech. 254, 437–466
Boulton-Stone J.M. (1995). The effects of surfactants on bursting gas bubbles. J. Fluid Mech. 302, 231
Cao W.M., Huang W.Z., Russell R.D. (2001). An error indicator monitor function for an r-adaptive finite-element method. J. Comput. Phys. 170, 871–892
Ceniceros H.D., Hou T.Y. (2001). An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172, 609–639
Chang Y.C., Hou T.Y., Merriman B., Osher S. (1996). A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449–464
Di, Y., Li R., and Tang, T. Simulating the mixture of two incompressible fluids with a variational phase field model in three space dimensions. in preparation.
Di Y., Li R., Tang T., Zhang P.W. (2005). Moving mesh finite element methods for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 26, 1036–1056
Duchemin L., Popinet S., Josserand C., Zaleski S. (2001). Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 3000–3008
Dvinsky A.S. (1991). Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476
Engquist B., Tornberg A.-K., Tsai R. (2005). Discretization of dirac delta functions in level set methods. J. Comput. Phys. 207, 28–51
Enright D., Fedkiw R., Ferziger J., Mitchell I. (2002). A hybrid particle level set methods for improved interface capturing. J. Comput. Phys. 183, 83–116
Harlow F.H., Shannon J.P. (1967). Distortion of a liquid drop. Science 157, 547–550
Harlow F.H., Shannon J.P. (1967). The splash of a liquid drop. J. Appl. Phys. 38, 3855–3866
Hong J.-M., Kim C.-H. (2005) Discontinuous fluids. ACM Trans. on Graph. 24, 915–920
Kang M., Fedkiw R., Liu X.-D. (2000). A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360
Li R., Tang T., Zhang P.W. (2001). Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588
Li R., Tang T., Zhang P.W. (2002). A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393
Lipnikov K., Shashkov M. (2006). The error-minimization-based strategy for moving mesh methods. Commun. Comput. Phys. 1, 53–80
Liu W.B., Tang T. (2001). Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems. Appl. Numer. Math. 38, 315–345
Liu X.-D., Fedkiw R., Kang M. (2000). A boundary condition capturing method for Poisson’s equation on irregular domains”. J. Comput. Phys. 160, 151–178
Longuet-Higgins M.S., Cocklet E.D. (1975). Deformation of steep surface waves on water I: A numerical method of computation. Proc. R. Soc. Lond. A. 350, 1
Losasso F., Fedkiw R., Osher S. (2006). Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010
Losasso F., Gibou F., Fedkiw R. (2004). Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462
MacIntyre F. (1972). Flow patterns in breaking bubbles. J. Geophys. Res. 77: 5211
Oguz H.Z. (1998). The role of surface disturbance on the entrainment of bubbles. J. Fluid Mech. 372, 189–212
Oguz H.N., Prosperetti A. (1990). Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143–179
Osher S., Sethian J.A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49
Rudman M. (1998). A volume-tracking method for incompressible multi-fluid flows with large density variations. Int. J. Numer. Methods Fluids 28, 357
Shu C.W., Osher S. (1989). Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78
Sussman M., Puckett E.G. (2000). A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible tow-phase flows. J. Comput. Phys. 162, 301–337
Sussman M., Smereka P., Osher S.J. (1994). A level set approach for computing solutions to incompressible tow-phase flows. J. Comput. Phys. 114, 146–159
Sussman M., Almgren A.S., Bell J.B., Colella P., Howell L.H., Welcome M. (1999). An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148, 81–124
Tan Z.J., Zhang Z.R., Huang Y.Q., Tang T. (2004). Moving mesh methods with locally varying time steps. J. Comput. Phys. 200, 347–367
Tang H.-Z. (2006). A moving mesh method for the Euler flow calculations using a directional monitor function. Commun. Comput. Phys. 1, 656–676
Tang H.Z., Tang T. (2003). Moving mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515
Tang H.Z., Tang T., Zhang P.W. (2003). An adaptive mesh redistribution method for nonlinear Hamilton-Jacobi equations in two- and three dimensions. J. Comput. Phys. 188, 543–572
Tang T., Trummer M.R. (1996). Boundary layer resolving pseudo-spectral methods for singular perturbation problems. SIAM J. Sci. Comput. 17, 430–438
Tornberg A.-K., Engquist B. (2004). Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462–488
Tornberg A.-K., Engquist B. (2000). A finite element based level set method for multiphase flow applications. Comput. Visualization Sci. 3, 93–101
Unverdi S.O., Tryggvason G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25
Yang X., James A.J., Lowengrub J., Zheng X., Cristini V. (2006). An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J. Comput. Phys. 217, 364–394
Zegeling P.A. (2005). On resistive MHD models with adaptive moving meshes. J. Sci. Comput. 24, 263–284
Zeng X., Lowengrub J., Anderson A., Cristini V. (2005). Adaptive unstructured volume remeshing—II: application to two-and three-dimensional level-set simulations of multiphase flow. J. Comput. Phys. 208, 626–650
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Di, Y., Li, R., Tang, T. et al. Level Set Calculations for Incompressible Two-Phase Flows on a Dynamically Adaptive Grid. J Sci Comput 31, 75–98 (2007). https://doi.org/10.1007/s10915-006-9119-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-006-9119-3