Skip to main content
Log in

Level Set Calculations for Incompressible Two-Phase Flows on a Dynamically Adaptive Grid

  • In memory of Professor Xu-Dong Liu
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

We present a coupled moving mesh and level set method for computing incompressible two-phase flow with surface tension. This work extends a recent work of Di et al. [(2005). SIAM J. Sci. Comput. 26, 1036–1056] where a moving mesh strategy was proposed to solve the incompressible Navier–Stokes equations. With the involvement of the level set function and the curvature of the interface, some subtle issues in the moving mesh scheme, in particular the solution interpolation from the old mesh to the new mesh and the choice of monitor functions, require careful considerations. In this work, a simple monitor function is proposed that involves both the level set function and its curvature. The purpose for designing the coupled moving mesh and level set method is to achieve higher resolution for the free surface by using a minimum amount of additional expense. Numerical experiments for air bubbles and water drops are presented to demonstrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson A., Zheng X., Cristini V. (2005). Adaptive unstructured volume remeshing - I: The method. J. Comput. Phys. 208, 616–625

    Article  MATH  MathSciNet  Google Scholar 

  2. Aulisa E., Manservisi S., Scardovelli R. (2003). A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. J. Comput. Phys. 188, 611–639

    Article  MATH  Google Scholar 

  3. Beckett G., Mackenzie J.A., Robertson M.L. (2006). An r-adaptive finite element method for the solution of the two-dimensional phase-field equations. Commun. Comput. Phys. 1, 805–826

    Google Scholar 

  4. Barth T.J., Sethian J.A. (1998). Numerical schemes for the Hamilton–Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145, 1–40

    Article  MATH  MathSciNet  Google Scholar 

  5. Brackbill J.U., Kothe D.B., Zemach C. (1992). A continuum method for modeling surface tension. J. Comput. Phys. 100, 335

    Article  MATH  MathSciNet  Google Scholar 

  6. Boulton-Stone J.M., Blake J.R. (1993). Gas bubble bursting at a free surface. J. Fluid Mech. 254, 437–466

    Article  MATH  Google Scholar 

  7. Boulton-Stone J.M. (1995). The effects of surfactants on bursting gas bubbles. J. Fluid Mech. 302, 231

    Article  MATH  Google Scholar 

  8. Cao W.M., Huang W.Z., Russell R.D. (2001). An error indicator monitor function for an r-adaptive finite-element method. J. Comput. Phys. 170, 871–892

    Article  MATH  MathSciNet  Google Scholar 

  9. Ceniceros H.D., Hou T.Y. (2001). An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172, 609–639

    Article  MATH  Google Scholar 

  10. Chang Y.C., Hou T.Y., Merriman B., Osher S. (1996). A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449–464

    Article  MATH  MathSciNet  Google Scholar 

  11. Di, Y., Li R., and Tang, T. Simulating the mixture of two incompressible fluids with a variational phase field model in three space dimensions. in preparation.

  12. Di Y., Li R., Tang T., Zhang P.W. (2005). Moving mesh finite element methods for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 26, 1036–1056

    Article  MATH  MathSciNet  Google Scholar 

  13. Duchemin L., Popinet S., Josserand C., Zaleski S. (2001). Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 3000–3008

    Article  Google Scholar 

  14. Dvinsky A.S. (1991). Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476

    Article  MATH  MathSciNet  Google Scholar 

  15. Engquist B., Tornberg A.-K., Tsai R. (2005). Discretization of dirac delta functions in level set methods. J. Comput. Phys. 207, 28–51

    Article  MATH  MathSciNet  Google Scholar 

  16. Enright D., Fedkiw R., Ferziger J., Mitchell I. (2002). A hybrid particle level set methods for improved interface capturing. J. Comput. Phys. 183, 83–116

    Article  MATH  MathSciNet  Google Scholar 

  17. Harlow F.H., Shannon J.P. (1967). Distortion of a liquid drop. Science 157, 547–550

    Article  Google Scholar 

  18. Harlow F.H., Shannon J.P. (1967). The splash of a liquid drop. J. Appl. Phys. 38, 3855–3866

    Article  Google Scholar 

  19. Hong J.-M., Kim C.-H. (2005) Discontinuous fluids. ACM Trans. on Graph. 24, 915–920

    Article  Google Scholar 

  20. Kang M., Fedkiw R., Liu X.-D. (2000). A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360

    Article  MATH  MathSciNet  Google Scholar 

  21. Li R., Tang T., Zhang P.W. (2001). Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588

    Article  MATH  MathSciNet  Google Scholar 

  22. Li R., Tang T., Zhang P.W. (2002). A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393

    Article  MATH  MathSciNet  Google Scholar 

  23. Lipnikov K., Shashkov M. (2006). The error-minimization-based strategy for moving mesh methods. Commun. Comput. Phys. 1, 53–80

    Google Scholar 

  24. Liu W.B., Tang T. (2001). Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems. Appl. Numer. Math. 38, 315–345

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu X.-D., Fedkiw R., Kang M. (2000). A boundary condition capturing method for Poisson’s equation on irregular domains”. J. Comput. Phys. 160, 151–178

    Article  MATH  MathSciNet  Google Scholar 

  26. Longuet-Higgins M.S., Cocklet E.D. (1975). Deformation of steep surface waves on water I: A numerical method of computation. Proc. R. Soc. Lond. A. 350, 1

    Google Scholar 

  27. Losasso F., Fedkiw R., Osher S. (2006). Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010

    Article  MathSciNet  Google Scholar 

  28. Losasso F., Gibou F., Fedkiw R. (2004). Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462

    Article  Google Scholar 

  29. MacIntyre F. (1972). Flow patterns in breaking bubbles. J. Geophys. Res. 77: 5211

    Article  Google Scholar 

  30. Oguz H.Z. (1998). The role of surface disturbance on the entrainment of bubbles. J. Fluid Mech. 372, 189–212

    Article  MATH  Google Scholar 

  31. Oguz H.N., Prosperetti A. (1990). Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143–179

    Article  MathSciNet  Google Scholar 

  32. Osher S., Sethian J.A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49

    Article  MATH  MathSciNet  Google Scholar 

  33. Rudman M. (1998). A volume-tracking method for incompressible multi-fluid flows with large density variations. Int. J. Numer. Methods Fluids 28, 357

    Article  MATH  Google Scholar 

  34. Shu C.W., Osher S. (1989). Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78

    Article  MATH  MathSciNet  Google Scholar 

  35. Sussman M., Puckett E.G. (2000). A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible tow-phase flows. J. Comput. Phys. 162, 301–337

    Article  MATH  MathSciNet  Google Scholar 

  36. Sussman M., Smereka P., Osher S.J. (1994). A level set approach for computing solutions to incompressible tow-phase flows. J. Comput. Phys. 114, 146–159

    Article  MATH  Google Scholar 

  37. Sussman M., Almgren A.S., Bell J.B., Colella P., Howell L.H., Welcome M. (1999). An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148, 81–124

    Article  MATH  MathSciNet  Google Scholar 

  38. Tan Z.J., Zhang Z.R., Huang Y.Q., Tang T. (2004). Moving mesh methods with locally varying time steps. J. Comput. Phys. 200, 347–367

    Article  MATH  MathSciNet  Google Scholar 

  39. Tang H.-Z. (2006). A moving mesh method for the Euler flow calculations using a directional monitor function. Commun. Comput. Phys. 1, 656–676

    Google Scholar 

  40. Tang H.Z., Tang T. (2003). Moving mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515

    Article  MATH  MathSciNet  Google Scholar 

  41. Tang H.Z., Tang T., Zhang P.W. (2003). An adaptive mesh redistribution method for nonlinear Hamilton-Jacobi equations in two- and three dimensions. J. Comput. Phys. 188, 543–572

    Article  MATH  MathSciNet  Google Scholar 

  42. Tang T., Trummer M.R. (1996). Boundary layer resolving pseudo-spectral methods for singular perturbation problems. SIAM J. Sci. Comput. 17, 430–438

    Article  MATH  MathSciNet  Google Scholar 

  43. Tornberg A.-K., Engquist B. (2004). Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462–488

    Article  MATH  MathSciNet  Google Scholar 

  44. Tornberg A.-K., Engquist B. (2000). A finite element based level set method for multiphase flow applications. Comput. Visualization Sci. 3, 93–101

    Article  MATH  Google Scholar 

  45. Unverdi S.O., Tryggvason G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25

    Article  MATH  Google Scholar 

  46. Yang X., James A.J., Lowengrub J., Zheng X., Cristini V. (2006). An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J. Comput. Phys. 217, 364–394

    Article  MATH  MathSciNet  Google Scholar 

  47. Zegeling P.A. (2005). On resistive MHD models with adaptive moving meshes. J. Sci. Comput. 24, 263–284

    Article  MATH  MathSciNet  Google Scholar 

  48. Zeng X., Lowengrub J., Anderson A., Cristini V. (2005). Adaptive unstructured volume remeshing—II: application to two-and three-dimensional level-set simulations of multiphase flow. J. Comput. Phys. 208, 626–650

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, Y., Li, R., Tang, T. et al. Level Set Calculations for Incompressible Two-Phase Flows on a Dynamically Adaptive Grid. J Sci Comput 31, 75–98 (2007). https://doi.org/10.1007/s10915-006-9119-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9119-3

Keywords