Abstract
The error estimates of automatic integration by pure floating-point arithmetic are intrinsically embedded with uncertainty. This in critical cases can make the computation problematic. To avoid the problem, we use product rules to implement a self-validating subroutine for bivariate cubature over rectangular regions. Different from previous self-validating integrators for multiple variables (Storck in Scientific Computing with Automatic Result Verification, pp. 187–224, Academic Press, San Diego, [1993]; Wolfe in Appl. Math. Comput. 96:145–159, [1998]), which use derivatives of specific higher orders for the error estimates, we extend the ideas for univariate quadrature investigated in (Chen in Computing 78(1):81–99, [2006]) to our bivariate cubature to enable locally adaptive error estimates by full utilization of Peano kernels theorem. The mechanism for active recognition of unreachable error bounds is also set up. We demonstrate the effectiveness of our approach by comparing it with a conventional integrator.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)
Chen, C.-Y.: Adaptive numerische Quadratur und Kubatur mit automatischer Ergebnisverifikation. PhD thesis, University of Karlsruhe (1998)
Chen, C.-Y.: Computing interval enclosures for definite integrals by application of triple adaptive strategies. Computing 78(1), 81–99 (2006)
Chen, C.-Y.: Verified computed Peano constants and applications in numerical quadrature. BIT 47(2), 297–312 (2007)
Cools, R., Laurie, D., Pluym, L.: A User Manual for Cubpack++ Version 1.1. Dept. of Computer Science, K.U. Leuven, Belgium (1997)
Cools, R., Laurie, D., Pluym, L.: Algorithm 764: Cubpack++: a C++ package for automatic two-dimensional cubature. ACM Trans. Math. Softw. 23(1), 1–15 (1997)
de Boor, C.: CADRE: an algorithm for numerical quadrature. In: Rice, J.R. (ed.) Mathematical Software, pp. 417–449. Academic Press, New York (1971)
de Boor, C.: On writing an automatic integration algorithm. In: Rice, J.R. (ed.) Mathematical Software, pp. 201–209. Academic Press, New York (1971)
Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, New York (1984)
Engels, H.: Numerical Quadrature and Cubature. Academic Press, New York (1980)
Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I. Springer, Berlin (1993)
Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch.: PASCAL-XSC, Springer, Berlin (1991)
Knuth, D.E.: The Art of Computer Programming, vol. 3. Wesley, Addison (1973)
Kulisch, U., Miranker, W.L.: Computer Arithmetic in Theory and Practice. Academic Press, New York (1981)
Luik, E.: Fehlerabschätzungen bei Quadratur und Kubatur auf der Grundlage von Approximationsgraden. PhD thesis, University of Tübingen (1984)
Malcolm, M.A., Simpson, R.B.: Local versus global strategies for adaptive quadrature. ACM. Trans. Math. Softw. 1(2), 129–146 (1975)
Rall, L.B.: Automatic Differentiation: Techniques and Applications. Springer, Berlin (1981)
Stoer, J.: Numerische Mathematik 1, 7th edn. Springer, Berlin (1994)
Storck, U.: Numerical integration in two dimensions with automatic result verification. In: Adams, E., Kulisch, U. (eds.) Scientific Computing with Automatic Result Verification, pp. 187–224. Academic Press, San Diego (1993)
Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice-Hall, Englewood Cliffs (1966)
Wolfe, M.A.: Interval enclosures for a certain class of multiple integrals. Appl. Math. Comput. 96, 145–159 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, CY. Bivariate Product Cubature Using Peano Kernels for Local Error Estimates. J Sci Comput 36, 69–88 (2008). https://doi.org/10.1007/s10915-007-9178-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9178-0