Skip to main content
Log in

On the Use of Compact Streamfunction-Velocity Formulation of Steady Navier-Stokes Equations on Geometries beyond Rectangular

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new methodology has been proposed to solve two-dimensional (2D) Navier-Stokes (N-S) equations representing incompressible viscous fluid flows on irregular geometries. It is based on second order compact finite difference discretization of the fourth order streamfunction equation on computational plane. The important advantage of this formulation is not only to overcome the difficulties existing in the velocity-pressure and streamfunction-vorticity formulations, but also for being applicable to complex geometries beyond rectangular. We first apply the proposed scheme to a problem having analytical solution and then to the well-studied benchmark problem (problem of lid-driven cavity flow) in viscous fluid flow. Finally, we demonstrate the robustness of our proposed scheme on flow in a complex domain (e.g. constricted channel and dilated channel). It is seen to efficiently capture steady state solutions of the N-S equations with Dirichlet as well as Neumann boundary conditions. In addition to this, it captures viscous flows involving free and wall bounded shear layers which invariably contain spatial scale variations. Estimates of the error incurred show that the results are very accurate on a coarser grid. The results obtained using this scheme are in excellent agreement with analytical and numerical results whenever available and they clearly demonstrate the superior scale resolution of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  2. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. Hemisphere, New York (1984)

    MATH  Google Scholar 

  3. Bruger, A., Gustafsson, B., Lotstedt, P., Nilsson, J.: High order accurate solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 203, 49–51 (2005)

    Article  MathSciNet  Google Scholar 

  4. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12 (1967)

    Article  MATH  Google Scholar 

  5. Chorin, A.J.: Numerical solution of the Navier-Stokes equation. Math. Comput. 22, 747–762 (1968)

    MathSciNet  Google Scholar 

  6. Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69, 434–459 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Karageorghis, A., Tang, T.: A spectral domain decomposition approach for steady Navier-Stokes problems in circular geometries. Comput. Fluids 25, 541–549 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Marinos, A.T.: Numerical experiments on compact computational schemes for solving the first biharmonic problem in rectangles. J. Comput. Phys. 115, 406–422 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kumar, B.V.R., Kundu, K.B.: Hemodynamics in aneurysm. Comput. Biomed. Res. 29, 119–139 (1996)

    Article  Google Scholar 

  10. Bruneau, C.H., Jouron, C.: An efficient scheme for solving steady incompressible Navier-Stokes equations. J. Comput. Phys. 89, 389–413 (1990)

    Article  MATH  Google Scholar 

  11. Bruneau, C.H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2005)

    Article  Google Scholar 

  12. Patil, D.V., Lakshmisha, K.N., Rogg, B.: Lattice Boltzmann simulation of lid-driven flow in deep cavities. Comput. Fluids 35(10), 1116–1125 (2006)

    Article  MATH  Google Scholar 

  13. Atlas, I., Erhel, J., Gupta, M.M.: High accuracy solution of three-dimensional biharmonic equations. Numer. Algorithms 29, 1–19 (2002)

    Article  MathSciNet  Google Scholar 

  14. Atlas, I., Dym, J., Gupta, M.M., Manohar, R.: Multigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998)

    Article  MathSciNet  Google Scholar 

  15. Ekaterinaris, J.A., Ioannou, C.V., Katsamouris, A.N.: Flow dynamics in expansions characterizing abdominal aorta aneurysms. Ann. Vasc. Surg. 20, 351–359 (2006)

    Article  Google Scholar 

  16. Hoffman, J.D.: Relationship between the truncation errors of centered finite-difference approximations on uniform and nonuniform meshes. J. Comput. Phys. 46, 469–474 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Castillo, J.E., Steinberg, S.: The sensitivity and accuracy of fourth order finite-difference schemes on nonuniform grids in one dimension. DE-AC04-76DP00789 (1995)

  18. Koseff, J.R., Street, R.L.: The lid-driven cavity flow: A synthesis of qualitative and quantitative observations. J. Fluids Eng. 106, 390–398 (1984)

    Article  Google Scholar 

  19. Wang, J., Zhong, W., Zhang, J.: High order compact computation and nonuniform grids for streamfunction vorticity equations. Appl. Math. Comput. 179, 108–120 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pan, F., Acrivos, A.: Steady flows in rectangular cavities. J. Fluid Mech. 28(4), 643 (1967)

    Article  Google Scholar 

  22. Van Der Vorst, H.: BiCGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput. 13, 631–644 (1992)

    Article  MATH  Google Scholar 

  23. Ben-Artzi, M., Croisille, J.P., Fishelov, D., Trachtenberg, S.: A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations. J. Comput. Phys. 205, 640–664 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cheng, M., Hung, K.C.: Vortex structure of steady flows in a rectangular cavity. Comput. Fluids 35(10), 1046–1062 (2006)

    Article  MATH  Google Scholar 

  25. Kropinski, M.C.A.: Numerical methods for multiple inviscid interfaces in creeping flows. J. Comput. Phys. 180, 1–24 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, M., Fornberg, B., Tang, T.: A compact fourth order finite difference scheme for the steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 20, 1137–1151 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, M., Tang, T.: A compact fourth-order finite difference scheme for unsteady viscous incompressible flows. J. Sci. Comput. 16, 29–46 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gupta, M.M.: Discretization error estimates for certain splitting procedures for solving first biharmonic boundary value problems. SIAM J. Numer. Anal. 12, 364–377 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier-Stokes equation: streamfunction-velocity formulations. J. Comput. Phys. 207, 52–68 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gupta, M.M., Manohar, R.: Direct solution of biharmonic equation using noncoupled approach. J. Comput. Phys. 33, 236–248 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Axelsson, O., Gustafsson, I.: An iterative solver for a mixed variable variational formulation of the (first) biharmonic problem. Comput. Methods Appl. Mech. Eng. 20, 9–16 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  32. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)

    Article  MATH  Google Scholar 

  33. Mancera, P.F.A., Hunt, R.: Fourth order method for solving the Navier-Stokes equations in a constricted channel. Int. J. Numer. Methods Fluids 25, 1119–1135 (1997)

    Article  MATH  Google Scholar 

  34. Mancera, P.F.A.: A study of numerical solution of the steady two dimensional Navier-Stokes equations in a constricted channel problem by a compact fourth order method. Appl. Math. Comput. 146, 771–790 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93–136 (2000)

    Article  MathSciNet  Google Scholar 

  36. Tamamidis, P., Zhang, G., Assanis, D.N.: Comparison of pressure-based and artificial compressibility methods for solving 3D steady incompressible viscous flows. J. Comput. Phys. 124, 1 (1995)

    Article  Google Scholar 

  37. Kupferman, R.A.: A central-difference scheme for a pure stream function formulation of incompressible viscous flows. SIAM J. Sci. Comput. 23(1) (2001)

  38. Hirsh, R.S.: Higher-order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. Comput. Phys. 19, 90–109 (1975)

    Article  MathSciNet  Google Scholar 

  39. Lele, S.K.: Compact finite difference schemes with spectral like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pandit, S.K., Kalita, J.C., Dalal, D.C.: A transient higher order compact scheme for incompressible viscous flows on geometries beyond rectangular. J. Comput. Phys. 225, 1100–1124 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192(2), 677–694 (2003)

    Article  MATH  Google Scholar 

  42. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solution for incompressible Navier-Stokes equation and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  43. Adam, Y.: Highly accurate compact implicit methods and boundary conditions. J. Comput. Phys. 24, 10–22 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Pandit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandit, S.K. On the Use of Compact Streamfunction-Velocity Formulation of Steady Navier-Stokes Equations on Geometries beyond Rectangular. J Sci Comput 36, 219–242 (2008). https://doi.org/10.1007/s10915-008-9186-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9186-8

Keywords

Navigation