Skip to main content
Log in

Numerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we will consider the simulation of the local discontinuous Galerkin (LDG) finite element method for the porous medium equation (PME), where we present an additional nonnegativity preserving limiter to satisfy the physical nature of the PME. We also prove for the discontinuous ℙ0 finite element that the average in each cell of the LDG solution for the PME maintains nonnegativity if the initial solution is nonnegative within some restriction for the flux’s parameter. Finally, numerical results are given to show the advantage of the LDG method for the simulation of the PME, in its capability to capture accurately sharp interfaces without oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S.: Analyticity of the interface of the porous medium equation after waiting time. Proc. Am. Math. Soc. 102, 329–336 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Karniadakis, G.E., Shu, C.-W. (ed.): Discontinuous Galerkin Methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    MATH  Google Scholar 

  5. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P 1-discontinuous Galerkin method for scalar conservation laws. RAIRO Anal. Numér. 25, 337–361 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. DiBenedetto, E., Hoff, D.: An interface tracking algorithm for the porous medium equation. Trans. Am. Math. Soc. 284, 463–500 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Graveleau, J.L., Jamet, P.: A finite difference approach to some degenerate nonlinear parabolic equations. SIAM J. Appl. Math. 20, 199–223 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35(6), 2405–2439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nakaki, T., Tomoeda, K.: A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena. SIAM J. Numer. Anal. 40, 945–954 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Osher, S.: Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21, 217–235 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Osher, S.: Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22, 947–961 (1984)

    Article  MathSciNet  Google Scholar 

  19. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory report LA-UR-73-479, Los Alamos, NM (1973)

  20. Rosenau, P., Kamin, S.: Thermal waves in an absorbing and convecting medium. Physica D 8, 273–283 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    Article  MATH  Google Scholar 

  22. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

The research of Q. Zhang is supported by CNNSF grant 10301016.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Wu, ZL. Numerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method. J Sci Comput 38, 127–148 (2009). https://doi.org/10.1007/s10915-008-9223-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9223-7

Keywords

Navigation