Skip to main content
Log in

Modified Optimal Prediction and its Application to a Particle-Method Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper is concerned with system reduction by statistical methods and, in particular, by the optimal prediction method introduced in (Chorin, A.J., Hald, O.H., Kupferman, R., Optimal prediction with memory, Phys. D 166:239–257, 2002). The optimal prediction method deals with problems that possess large and small scales and uses the conditional expectation to model the influence of the small scales on the large ones.

In the current paper, we develop a different variant of the optimal prediction method as well as introduce and compare several approximations of this method. We apply the original and modified optimal prediction methods to a system of ODEs obtained from a particle method discretization of a hyperbolic PDE and demonstrate their performance in a number of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, D.: Optimal prediction for Burgers equations. Multi. Mod. Sim. 6(1), 27–52 (2007)

    Article  MATH  Google Scholar 

  2. Chertock, A., Kurganov, A.: On a hybrid finite-volume particle method, M2AN. Math. Model. Numer. Anal. 38, 1071–1091 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chertock, A., Kurganov, A.: On a practical implementation of particle methods. Appl. Numer. Math. 56, 1418–1431 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chertock, A., Kurganov, A.: Computing multivalued solutions of pressureless gas dynamics by deterministic particle methods. Commun. Comput. Phys. 5, 565–581 (2009)

    MathSciNet  Google Scholar 

  5. Chertock, A., Kurganov, A., Petrova, G.: Finite-volume-particle methods for models of transport of pollutant in shallow water. J. Sci. Comput. 27, 189–199 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57(4), 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  7. Chorin, A.J., Hald, O.H.: Stochastic Tools in Mathematics and Science. Springer, New York (2005)

    Google Scholar 

  8. Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction with memory. Phys. D 166(3–4), 239–257 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chorin, A.J., Stinis, P.: Problem reduction, renormalization, and memory. Commun. Appl. Math. Comput. Sci. 1, 1–27 (2005)

    MathSciNet  Google Scholar 

  10. Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  11. Fick, E., Sauermann, G.: In: The Quantum Statistics of Dynamic Processes. Springer Series in Solid-State Sciences, vol. 86. Springer, Berlin (1990)

  12. Givon, D., Hald, O.H., Kupferman, R.: Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism. Israel J. Math. 199, 279–316 (2004)

    Google Scholar 

  13. Grabert, H.: In: Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer Series in Solid-State Sciences, vol. 95. Springer, Berlin, New York (1982)

  14. Hald, O.H., Stinis, P.: Optimal prediction and the rate of decay of solutions of the Euler equations in two and three dimensions. Proc. Natl. Acad. Sci. 104(16), 6527–6532 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hald, O.H.: Convergence of Vortex Methods, Vortex Methods and Vortex Motion, pp. 33-58. SIAM, Philadelphia (1991)

    Google Scholar 

  16. Mori, H.: Transport, collective motion and Brownian motion. Prog. Theor. Phys. 33, 423–450 (1965)

    Article  MATH  Google Scholar 

  17. Nordholm, S., Zwanzig, R.: A systematic derivation of exact generalized Brownian motion theory. J. Stat. Phys. 13, 347–371 (1975)

    Article  MathSciNet  Google Scholar 

  18. Raviart, P.-A.: In: An Analysis of Particle Methods, Numerical Methods in Fluid Dynamics (Como, 1983). Lecture Notes in Math., vol. 1127, pp. 243–324. Springer, Berlin (1985)

  19. Stinis, P.: Higher order Mori-Zwanzig models for the Euler equations. Tech. report, Technical Report LBNL-60899 (2006)

  20. Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. Ser. A 158, 499 (1937)

    Article  Google Scholar 

  21. Zwanzig, R.: Nonlinear generalized Langevin equation. J. Stat. Phys. 9, 215–220 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Chertock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertock, A., Gottlieb, D. & Solomonoff, A. Modified Optimal Prediction and its Application to a Particle-Method Problem. J Sci Comput 37, 189–201 (2008). https://doi.org/10.1007/s10915-008-9242-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9242-4

Keywords

Navigation