Skip to main content
Log in

Numerical Simulation of a Weakly Nonlinear Model for Water Waves with Viscosity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The potential flow equations which govern the free-surface motion of an ideal fluid (the water wave problem) are notoriously difficult to solve for a number of reasons. First, they are a classical free-boundary problem where the domain shape is one of the unknowns to be found. Additionally, they are strongly nonlinear (with derivatives appearing in the nonlinearity) without a natural dissipation mechanism so that spurious high-frequency modes are not damped. In this contribution we address the latter of these difficulties using a surface formulation (which addresses the former complication) supplemented with physically-motivated viscous effects recently derived by Dias et al. (Phys. Lett. A 372:1297–1302, 2008). The novelty of our approach is to derive a weakly nonlinear model from the surface formulation of Zakharov (J. Appl. Mech. Tech. Phys. 9:190–194, 1968) and Craig and Sulem (J. Comput. Phys. 108:73–83, 1993), complemented with the viscous effects mentioned above. Our new model is simple to implement while being both faithful to the physics of the problem and extremely stable numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson, D.J.: Elementary Fluid Dynamics. Clarendon, Oxford University Press, New York (1990)

    MATH  Google Scholar 

  2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

    MATH  Google Scholar 

  3. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dias, F., Bridges, T.J.: The numerical computation of freely propagating time-dependent irrotational water waves. Fluid Dyn. Res. 38(12), 803–830 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dias, F., Dyachenko, A.I., Zakharov, V.E.: Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions. Phys. Lett. A 372, 1297–1302 (2008)

    Article  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  7. Fochesato, C., Dias, F.: A fast method for nonlinear three-dimensional free-surface waves. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 462(2073), 2715–2735 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grilli, S.T., Guyenne, P., Dias, F.: A fully nonlinear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids 35, 829–867 (2001)

    Article  MATH  Google Scholar 

  9. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia (1977). CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26

    MATH  Google Scholar 

  10. Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  11. Mei, C.C.: Numerical methods in water-wave diffraction and radiation. Annu. Rev. Fluid Mech. 10, 393–416 (1978)

    Article  Google Scholar 

  12. Milder, D.M.: The effects of truncation on surface-wave Hamiltonians. J. Fluid Mech. 217, 249–262 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Milder, D.M.: An improved formalism for rough-surface scattering of acoustic and electromagnetic waves. In: Proceedings of SPIE—The International Society for Optical Engineering, San Diego, 1991, vol. 1558, pp. 213–221. Int. Soc. Optical Engineering, Bellingham (1991)

    Google Scholar 

  14. Nicholls, D.P., Reitich, F.: A new approach to analyticity of Dirichlet-Neumann operators. Proc. R. Soc. Edinb. Sect. A 131(6), 1411–1433 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nicholls, D.P., Reitich, F.: On analyticity of traveling water waves. Proc. R. Soc. Lond. A 461(2057), 1283–1309 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schwartz, L.W., Fenton, J.D.: Strongly nonlinear waves. In: Annual Review of Fluid Mechanics, vol. 14, pp. 39–60. Annual Reviews, Palo Alto (1982)

    Google Scholar 

  17. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567–603 (1999)

    Article  MathSciNet  Google Scholar 

  18. Tsai, W.-T., Yue, D.K.P.: Computation of nonlinear free-surface flows. In: Annual Review of Fluid Mechanics, vol. 28, pp. 249–278. Annual Reviews, Palo Alto (1996)

    Google Scholar 

  19. West, B.J., Brueckner, K.A., Janda, R.S., Milder, D.M., Milton, R.L.: A new numerical method for surface hydrodynamics. J. Geophys. Res. 92, 11803–11824 (1987)

    Article  Google Scholar 

  20. Watson, K.M., West, B.J.: A transport–equation description of nonlinear ocean surface wave interactions. J. Fluid Mech. 70, 815–826 (1975)

    Article  MATH  Google Scholar 

  21. Yeung, R.W.: Numerical methods in free-surface flows. Annu. Rev. Fluid Mech. 14, 395–442 (1982)

    Article  MathSciNet  Google Scholar 

  22. Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Nicholls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakleas, M., Nicholls, D.P. Numerical Simulation of a Weakly Nonlinear Model for Water Waves with Viscosity. J Sci Comput 42, 274–290 (2010). https://doi.org/10.1007/s10915-009-9324-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9324-y

Keywords

Navigation