Skip to main content
Log in

Fast Multiresolution Algorithms and Their Related Variational Problems for Image Denoising

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

When considering fast multiresolution techniques for image denoising problems, there are three important aspects. The first one is the choice of the specific multiresolution, the second one the choice of a proper filter function and the third one the choice of the thresholding parameter. Starting from the classical one, namely, linear wavelet algorithms with Donoho and Johnstone’s Soft-thresholding with the universal shrinkage parameter, the first aim of this paper is to improve it in the three mentioned directions. Thus, a new nonlinear approach is proposed and analyzed. On the other hand, the linear approach of Donoho and Johnstone is related with a well known variational problem. Our second aim is to find a related variational problem, more adapted to the denoising problem, for the new approach. We would like to mention that the analysis of theoretical properties in a nonlinear setting are usually notoriously more difficult. Finally, a comparison with other approaches, including linear and nonlinear multiresolution schemes, SVD-based schemes and filters with a non-multiresolution nature, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis with error control for compact image representation. Signal Proc. 82(4), 587–608 (2002)

    Article  MATH  Google Scholar 

  2. Amat, S., Aràndiga, F., Cohen, A., Donat, R., García, G., von Oehsen, M.: Data compresion with ENO schemes. Appl. Comput. Harmon. Anal. 11, 273–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: Analysis of a new nonlinear subdivision scheme. Applications in image processing. Found. Comput. Math. 6(2), 193–225 (2002)

    Article  MathSciNet  Google Scholar 

  4. Amat, S., Liandrat, J., Ruiz, J., Trillo, J.C.: On a nonlinear cell-average multiresolution scheme for image compression. Appl. Numer. Math. (2008, submitted)

  5. Aràndiga, F., Belda, A.M.: Weighted ENO interpolation and applications. Commun. Nonlinear Sci. Numer. Simul. 9, 187–195 (2003)

    Article  Google Scholar 

  6. Aràndiga, F., Donat, R.: Nonlinear multi-scale decomposition: the approach of A. Harten. Numer. Algorithms 23, 175–216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bacchelli, S., Papi, S.: Filtered wavelets thresholding methods. J. Comput. Appl. Math. 164–165, 39–52 (2004)

    Article  MathSciNet  Google Scholar 

  8. Bertalmío, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19(1–3), 95–122 (2003). Special issue in honor of the sixtieth birthday of Stanley Osher

    Article  MATH  MathSciNet  Google Scholar 

  9. Candès, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002). Dedicated to the memory of Lucien Le Cam

    Article  MATH  Google Scholar 

  10. Chambolle, A., DeVore, R.A., Lee, N., Lucier, B.J.: Nonlinear wavelet image processing: variational problem, compression and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7, 319–335 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, T.F., Shen, J., Vese, L.: Variational PDE models in image processing. Not. Am. Math. Soc. 50(1), 14–26 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Chan, T.F., Zhou, H.-M.: Total variation wavelet thresholding. J. Sci. Comput. 32(2), 315–341 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cohen, A., DeVore, R., Petrushev, P., Xu, H.: Nonlinear approximation and the space BV(R 2). Am. J. Math. 121(3), 587–628 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahmen, W., Micchelli, C.A.: Biorthogonal wavelet expansions. Constr. Approx. 13(3), 293–328 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring, and denoising. Appl. Comput. Harmon. Anal. 19(1), 1–16 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Devore, R.A., Lucier, B.J.: Fast wavelet techniques for near-optimal image processing. In: Proc. IEEE Military Communications Conference, vol. 3, pp. 1129–1135. IEEE Press, New York (1992)

    Google Scholar 

  18. Donoho, D.L.: Denoising by soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Donoho, D.L.: Ridge functions and orthonormal ridgelets. J. Approx. Theory 111(2), 143–179 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Donoho, D.L., Johnstone, I.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Harten, A.: Discrete multiresolution analysis and generalized wavelets. J. Appl. Numer. Math. 12, 153–192 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Harten, A.: Multiresolution representation of data II. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Le Pennec, E., Mallat, S.: Image compression with geometrical wavelets. In: IEEE Conference on Image Processing (ICIP), Vancouver, September, 2000

  24. Matei, B.: Smoothness characterization and stability for nonlinear multiscale representations. C. R. Acad. Sci. Paris, Ser. I 338, 321–326 (2004)

    MATH  MathSciNet  Google Scholar 

  25. Rabbani, M., Jones, P.W.: Digital image compression techniques. Tutorial text. Society of Photo-Optical Instrumentation Engineers (SPIE), TT07 (1991)

  26. Starck, J.-L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  27. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wongsawat, Y., Rao, K.R., Oraintara, S.: Multichannel SVD-based image denoising. In: IEEE International Symposium on Circuits and Systems (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Amat.

Additional information

Research of S. Amat was supported in part by the Spanish grants MTM2007-62945 and 08662/PI/08.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amat, S., Ruiz, J. & Trillo, J.C. Fast Multiresolution Algorithms and Their Related Variational Problems for Image Denoising. J Sci Comput 43, 1–23 (2010). https://doi.org/10.1007/s10915-009-9336-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9336-7

Navigation