Skip to main content
Log in

Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approximations of discontinuous problems deteriorates due to the Gibbs phenomenon, even as more points are added. In this paper we show that it is possible to remove the Gibbs phenomenon from RBF approximations of discontinuous functions as well as from RBF solutions of some hyperbolic partial differential equations. Although the theory for the resolution of the Gibbs phenomenon by reprojection in Gegenbauer polynomials relies on the orthogonality of the basis functions, and the RBF basis is not orthogonal, we observe that the Gegenbauer polynomials recover high order convergence from the RBF approximations of discontinuous problems in a variety of numerical examples including the linear and nonlinear hyperbolic partial differential equations. Our numerical examples using multi-quadric RBFs suggest that the Gegenbauer polynomials are Gibbs complementary to the RBF multi-quadric basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman, H.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    Google Scholar 

  2. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Boyd, J.P.: Trouble with Gegenbauer reconstruction for defeating Gibbs phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations. J. Comput. Phys. 204, 253–264 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis functions. SIGGRAPH pp. 67–76 (2001)

  5. Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53(6), 927–939 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fornberg, B., Flyer, N.: The Gibbs phenomenon for radial basis functions. In: Jerri, A.J. (ed.): Advances in the Gibbs Phenomenon with Detailed Introduction. Sampling Publishing, Potsdam (2007)

    Google Scholar 

  7. Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gelb, A.: Parameter optimization and reduction of round off error for the Gegenbauer reconstruction method. J. Sci. Comput. 20(3), 433–459 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of Gibbs phenomenon. Appl. Comput. Harmon. Anal. 20, 3–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon IV: Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function. Math. Comput. 64, 1081–1095 (1995)

    MATH  MathSciNet  Google Scholar 

  11. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon V: Recovering exponential accuracy from collocation point values of a piecewise analytic function. Numer. Math. 71, 511–526 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlieb, D., Shu, C.-W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43, 81–92 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gottlieb, S., Gottlieb, D., Shu, C.-W.: Recovering high order accuracy in WENO computations of steady state hyperbolic systems. J. Sci. Comput. 28, 307–318 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  16. Jung, J.-H.: A note on the Gibbs phenomenon with multi-quadric radial basis functions. Appl. Numer. Math. 57, 213–229 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jung, J.-H., Durante, V.: An iterative adaptive multi-quadric radial basis function method for the detection of local jump discontinuities. Appl. Numer. Math. 59, 1449–1466 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jung, J.-H., Gottlieb, S., Kim, S.O.: Iterative adaptive RBF methods for detection of edges in two dimensional functions. Appl. Numer. Math. (2010, submitted)

  19. Kansa, E.J.: Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics: II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19(6-8), 147–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kansa, E.J., Carlson, R.E.: Improved accuracy of multi-quadric interpolation using variable shape parameters. Comput. Math. Appl. 24(12), 99–120 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ohtake, Y., Belyaev, A., Seidel, H.-P.: 3D scattered data approximation with adaptive compactly supported radial basis functions. In: Shape Modeling International 2004, Genova, Italy, pp. 31–39. IEEE Comp. Soc., Los Alamitos (2004)

    Google Scholar 

  23. Platte, R., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43, 750–766 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sarra, S.A.: Adaptive radial basis function methods for time dependent partial differential equations. Appl. Numer. Math. 54(1), 79–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sarra, S.A.: A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs. Numer. Meth. Partial Differ. Equ. 24, 670–686 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shu, C.-W., Wong, P.: A note on the accuracy of spectral method applied to nonlinear conservation laws. J. Sci. Comput. 10, 357–369 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yee, P.V., Haykin, S.: Regularized Radial Basis Function Networks: Theory and Applications. Wiley, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Gottlieb.

Additional information

In memory of David Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, JH., Gottlieb, S., Kim, S.O. et al. Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems. J Sci Comput 45, 359–381 (2010). https://doi.org/10.1007/s10915-010-9360-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9360-7

Keywords

Navigation