Skip to main content
Log in

The Superconvergent Cluster Recovery Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new gradient recovery technique SCR (Superconvergent Cluster Recovery) is proposed and analyzed for finite element methods. A linear polynomial approximation is obtained by a least-squares fitting to the finite element solution at certain sample points, which in turn gives the recovered gradient at recovering points. Compared with similar techniques such as SPR and PPR, our approach is cheaper and efficient, while having same or even better accuracy. In additional, it can be used as an a posteriori error estimator, which is relatively simple to implement, cheap in terms of storage and computational cost for adaptive algorithms. We present some numerical examples illustrating the effectiveness of our recovery procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience, New York (2000)

    MATH  Google Scholar 

  2. Babuska, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Oxford University Press, Oxford (2001)

    Google Scholar 

  3. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blacker, T.D., Belytschko, T.: Superconvergence patch recovery with equilibrium and conjoint interpolation enhancements. Int. J. Numer. Methods Eng. 37, 517–536 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method. Math. Comput. 31, 74–111 (1977)

    MathSciNet  Google Scholar 

  6. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71, 945–969 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM. Math. Comput. 71, 971–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, C.M., Huang, Y.: High Accuracy Theory of Finite Element Methods. Hunan Science Press, Hunan (1995) (in Chinese)

    Google Scholar 

  9. Goodsell, G., Whiteman, J.R.: Superconvergence of recovered gradients of piecewise quadratic finite element approximations. Numer. Methods Partial Differ. Equ. 7, 61–83 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heimsund, B., Tai, X., Wang, J.: Superconvergence for the gradient of the finite element approximations by L 2-projections. SIAM J. Numer. Anal. 40, 1538–1560 (2002)

    Article  MathSciNet  Google Scholar 

  11. Hinton, E.: Least square analysis using finite elements. M.Sc. Thesis, Civ. Engng. Dept., University College of Swansea (1968)

  12. Hinton, E., Campbell, J.S.: Local and global smoothing of discontinuous finite element functions using a least-square method. Int. J. Numer. Methods Eng. 8, 461–480 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang, Y., Qin, H., Wang, D.: Centroidal Voronoi tessellation-based finite element superconvergence. Int. J. Numer. Methods Eng. 76, 1819–1839 (2008)

    Article  MathSciNet  Google Scholar 

  14. Huang, Y., Zhou, S.H.: Superconvergent patch recovery of finite element gradient by the local least-squares fitting and a posteriori error estimate. Report on the Fifth China-Japan joint seminar on Numerical Mathematics, Shanghai, China, August 21–25 (2000)

  15. Irons, B.M.: Least square surface fitting by finite elements, and an application to Stess smoothing. Aero. Stree Memo ASM 1524, Rolls-Royce (1967)

  16. Křižek, M., Neittaanmäki, P., Stenberg, R. (eds.): Finite Element Methods: Superconvergence, Post-processing, and a Posteriori Estimates. Lecture Notes in Pure and Applied Mathematics Series, vol. 196. Dekker, New York (1997)

    Google Scholar 

  17. Lee, T., Park, H.C., Lee, S.W.: A superconvergent stress recovery technique with equilibrium constraint. Int. J. Numer. Methods Eng. 40, 1139–1160 (1997)

    Article  MATH  Google Scholar 

  18. Li, X.D., Wiberg, N.E.: A posteriori error estimate by element patch postprocessing, adaptive analysis in energy and L 2 norms. Comput. Struct. 53(4), 907–919 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, B., Zhang, Z.: Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer. Methods Partial Differ. Equ. 15, 151–167 (1999)

    Article  MATH  Google Scholar 

  20. Lin, Q., Yan, N.: Construction and Analysis of High Efficient Finite Elements. Hebei University Press, Hebei (1996) (in Chinese)

    Google Scholar 

  21. Naga, A., Zhang, Z.: A posteriori error estimates based on polynomial preserving recovery. SIAM J. Numer. Anal. 42(4), 1780–1800 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Oden, J.T., Brauchli, H.J.: On the calculation of consistent Stess distributions in finite element applications. Int. J. Numer. Methods Eng. 3, 317–325 (1971)

    Article  MATH  Google Scholar 

  23. Tabbara, M., Blacker, T., Belytschko, T.: Finite element derivative recovery by moving least square interpolants. Comput. Methods Appl. Mech. Eng. 117, 211–223 (1994)

    Article  MATH  Google Scholar 

  24. Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods. Springer, Berlin (1995)

    MATH  Google Scholar 

  25. Wang, J.: A superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems. J. Math. Study 33(3), 229–243 (2000)

    MATH  MathSciNet  Google Scholar 

  26. Wiberg, N.E., Abdulwahab, F.: An efficient postprocessing technique for stress problems based on superconvergent derivatives and equilibrium. In: Hirsch, C.H., Pesiant, J., Kordulla, W. (eds.) Numerical Methods in Engineering, pp. 25–32. Elsevier, Amsterdam (1992)

    Google Scholar 

  27. Wiberg, N.E., Abdulwahab, F.: Patch recovery based on superconvergent derivatives and equilibrium. Int. J. Numer. Methods Eng. 36, 2703–2724 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wiberg, N.E., Abdulwahab, F., Ziukas, S.: Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int. J. Numer. Methods Eng. 37, 3417–3440 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wiberg, N.E., Abdulwahab, F., Ziukas, S.: Improved element stresses for node and element patches using superconvergent patch recovery. Commun. Numer. Methods Eng. 11, 619–627 (1995)

    Article  MATH  Google Scholar 

  30. Wiberg, N.E., Li, X.D.: Superconvergent patch recovery of finite element solution and a posteriori error estimate. Commun. Numer. Methods Eng. 10, 313–320 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xu, J., Zhang, Z.M.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2003)

    Article  Google Scholar 

  32. Yan, N.N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  33. Yan, N.N., Zhou, A.H.: Gradient recovery type a posteriori error estimators for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190, 4289–4299 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, Z.: Ultraconvergence of the patch recovery technique II. Math. Comput. 69, 141–158 (2000)

    MATH  Google Scholar 

  35. Zhang, Z.: Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio. Numer. Methods Partial Differ. Equ. 24, 960–971 (2008)

    Article  MATH  Google Scholar 

  36. Zhang, Z., Naga, A.: Validation of the a posteriori error estimator based on polynomial preserving recovery for linear elements. Int. J. Numer. Methods Eng. 61, 1860–1893 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhang, Z., Naga, A.: A new finite element gradient recovery method: Superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhang, Z., Zhu, J.Z.: Superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I). Comput. Methods Appl. Mech. Eng. 123, 173–187 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhang, Z., Victory, H.D. Jr.: Mathematical analysis of Zienkiewicz-Zhu’s derivative patch recovery technique for quadrilateral finite elements. Numer. Methods Partial Differ. Equ. 12, 507–524 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhou, S.H.: Superconvergent patch recovery of finite element gradient by the local least-squares fitting and a posteriori error estimate. M.Sc. Thesis, Xiangtan University (1999)

  41. Zhu, J.Z., Zienkiewicz, O.C.: Superconvergence recovery technique and a posteriori error estimates. Int. J. Numer. Methods Eng. 30, 1321–1339 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101, 207–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33, 1331–1382 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Huang.

Additional information

The first author is supported by NSFC for Distinguished Young Scholar 10625106, and the National Basic Research Program of China under the grant 2005CB321701. The second author is supported by Graduate school visit project of Peking University and Hunan Provincial Innovation Foundation for Postgraduate (S2008yjscx05).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Yi, N. The Superconvergent Cluster Recovery Method. J Sci Comput 44, 301–322 (2010). https://doi.org/10.1007/s10915-010-9379-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9379-9

Keywords

Navigation